Effettua una ricerca
Giuseppe Maruccio
Ruolo
Professore Associato
Organizzazione
Università del Salento
Dipartimento
Dipartimento di Matematica e Fisica "Ennio De Giorgi"
Area Scientifica
Area 02 - Scienze fisiche
Settore Scientifico Disciplinare
FIS/01 - Fisica Sperimentale
Settore ERC 1° livello
PE - Physical sciences and engineering
Settore ERC 2° livello
PE3 Condensed Matter Physics: Structure, electronic properties, fluids, nanosciences, biophysics
Settore ERC 3° livello
PE3_7 Spintronics
Foodborne illnesses caused by the ingestion of foods contaminated with pathogens and/or their toxins are still one of the major public health threats worldwide. Disposable devices, allowing the on-site, early and multiplexed quantitative detection of pathogenic bacteria are therefore highly sought. Herein, we report biochips that are able to quantitatively detect two of the most common food-associated pathogens, namely Listeria monocytogenes and Staphylococcus aureus from the suspensions of bacteria stationary-phase broth culture. With a detection limit as low as 5.00 CFU ml(-1) for L. monocytogenes and 1.26 CFU ml(-1) for S. aureus, our platform may be a promising point-of-care device not only for clinical and food diagnostics but also for biosecurity purposes.
In this work we report on the self-assembly of monodisperse iron oxide nanocrystals on silica-coated Au surfaces achieved by magnetic field-assisted solution deposition techniques and discuss the effects of the interactions that contribute to promote their ordered arrangement into small clusters, chain-like structures or high-density particle multilayer superlattices. The results highlight the roles of inter-particle and nanocrystal-substrate interactions in controlling the nucleation and growth of self-assembled clusters and superstructures made of spherical magnetic nanocrystals.
Here an EIS (electrochemical impedance spectroscopy) biochip to detect cell migration is demonstrated. This biochip has been inspired by a traditional transwell assay/modified Boyden chamber and consists of two compartments separated by a porous membrane. This structure (PDMS-based) is aligned to EIS sensors. Cells are seeded in the upper chamber through microfluidic channels. During migration cells go through the pores of the membrane and get in touch with the electrodes that detect migrated cells. The performance of our cell-chip was tested by investigating the migratory ability of hepatocellular carcinoma (HCC) cells as a function of microenvironment. For this purpose we challenged HCC cells to migrate on different extra-cellular matrix (ECM) components including laminin 1, collagen IV and laminin 5. The results reveal that our cell chip provides reliable results that consistently overlap with those obtained with traditional standardized Boyden chambers. Thus, we demonstrate a new, easy tool to study cell migration and to perform automatic assays. This approach is easier and faster than traditional transwell assays and can be suitable for high-throughput studies in drug discovery applications.
A full carbon diamond detector is proposed for the active target of PADME, an experiment which uses the positron beam of the BTF (Beam Test Facility) at the Laboratori Nazionali di Frascati to search for the production of dark photons in e+e - annihilation (M. Raggi et al., Adv. High Energy Phys. 2014 (2014) 959802). This paper presents the preliminary results of a beam test done in November 2015 of the PADME active target prototype. © CERN on behalf of the ATLAS and CMS Collaborations.
Cell culture technologies were initially developed as research tools for studying cell functions, but nowadays they are essential for the biotechnology industry, with rapidly expanding applications requiring more and more advancements with respect to traditional tools. Miniaturization and integration of sensors and microfluidic components with cell culture techniques open the way to the development of cellomics as a new field of research targeting innovative analytic platforms for high-throughput studies. This approach enables advanced cell studies under controllable conditions by providing inexpensive, easy-tooperate devices. Thanks to their numerous advantages cell-chips have become a hotspot in biosensors and bioelectronics fields and have been applied to very different fields. In this review exemplary applications will be discussed, for cell counting and detection, cytotoxicity assays, migration assays and stem cell studies.
In this work graphitic structures were fabricated on high quality polycrystalline CVD diamond by using a UV laser beam (lambda = 193 nm). Two different kinds of structures were realized on diamond to study the evolution from diamond to graphite at different irradiation conditions (spot like structures) and to study their electrical transport properties (strip like structures). The graphitic structures were characterized structurally and morphologically by micro-Raman spectroscopy and atomic force microscopy. The electrical properties were evaluated using the transmission line model. Finally, a full carbon detector was built and tested showing good nuclear detection properties.
Suitable postsynthesis surface modification of lead-chalcogenide quantum dots (QDs) is crucial to enable their integration in photovoltaic devices. Here we exploit arenethiolate anions to completely replace pristine oleate ligands on PbS QDs in the solution phase, thus preserving the colloidal stability of QDs and allowing their solution-based processability into photoconductive thin films. Complete QD surface modification relies on the stronger acidic character of arenethiols compared to that of alkanethiols and is demonstrated by FTIR and UVvisNIR absorption spectroscopy analyses, which provide quantitative evaluation of stoichiometry and thermodynamic stability of the resulting system. Arenethiolate ligands induce a noticeable reduction of the optical band gap of PbS QDs, which is described and explained by charge transfer interactions occurring at the organic/inorganic interface that relax exciton confinement, and a large increase of QD molar absorption coefficient, achieved through the conjugated moiety of the replacing ligands. In addition, surface modification in the solution phase promotes switching of the symmetry of PbS QD self-assembled superlattices from hexagonal to cubic close packing, which is accompanied by further reduction of the optical band gap, ascribed to inter-QD exciton delocalization and dielectric effects, together with a drastic improvement of the charge transport properties in PbS QD solids. As a result, smooth dense-packed thin films of arenethiolate-capped PbS QDs can be integrated in heterojunction solar cells via a single solution-processing step. Such single PbS QD layers exhibit abated cracking upon thermal or chemical postdeposition treatment, and the corresponding devices generate remarkable photocurrent densities and overall efficiencies, thus representing an effective strategy toward low-cost processing for QD-based photovoltaics.
In the last years, many studies have been performed on metal nanoparticles because of their possible applications as chemical and biological sensors [1]. Particularly, new design and fabrication strategy of plasmonic transductors have been proposed in order to enhance their sensing performances and reproducibility. Unfortunately, the most used fabrication methods for metallic nanostructured systems, such as EBL and FIB, are less accessible choices for scientists and industrial applications due to their critical drawbacks, like low speed and high-cost.
Injectable liposomes are characterized by a suitable size and unique lipid mixtures, which require time-consuming and nonstraightforward production processes. The complexity of the manufacturing methods may affect liposome solubility, the phase transition temperatures of the membranes, the average particle size, and the associated particle size distribution, with a possible impact on the drug encapsulation and release. By leveraging the precise steady-state control over the mixing of miscible liquids and a highly efficient heat transfer, microfluidic technology has proved to be an effective and direct methodology to produce liposomes. This approach results particularly efficient in reducing the number of the sizing steps, when compared to standard industrial methods. Here, Microfluidic Hydrodynamic Focusing chips were produced and used to form liposomes upon tuning experimental parameters such as lipids concentration and Flow-Rate-Ratios (FRRs). Although modelling evidenced the dependence of the laminar flow on the geometric constraints and the FRR conditions, for the specific formulation investigated in this study, the lipids concentration was identified as the primary factor influencing the size of the liposomes and their polydispersity index. This was attributed to a predominance of the bending elasticity modulus over the vesiculation index in the lipid mixture used. Eventually, liposomes of injectable size were produced using microfluidic one-pot synthesis in continuous flow.
The surface of a detector grade CVD polycrystalline diamond sample (5 × 5 × 0.05 mm3) was irradiated by an ArF excimer laser (λ = 193 nm, τ = 20 ns) to produce graphitic conductive layers. In particular, two sets of four parallel graphitic strip-like contacts, with 1 mm pitch, were created along the whole sample on the top and on the rear surfaces of the sample respectively. The two series of stripes lie normally to each other. Such a grid allows to obtain a segmented all-carbon device capable of giving bi-dimensional information on particle detection processes in nuclear applications. Afterwards, an extensive characterization of the samples was performed: SEM and micro-Raman investigations to study the morphological and structural evolution of the irradiated areas, EDS measurements to individuate any absorption phenomena from environment associated to laser treatment, and nanoindentation mapping to understand how the hard-soft transformation occurred depending on the locally transferred energy. Finally, current-voltage analyses were carried out checking the ohmic behavior of the diamond-graphite contact. By comparing the results of the different characterization analyses, a strong periodicity of the modified surface properties was found, confirming the reliability and reproducibility of the laser-induced graphitization process. The results demonstrate that the laser-writing technique is a good and fast solution to produce graphitic contacts on diamond surface and therefore represents a promising way to fabricate segmented all-carbon devices.
In the last years there has been an increase of interest in diamond devices because of the promising applications in different field, such as high-energy physics, radiotherapy and biochemical applications. In particular, a new frontier is represented by the realization of full-carbon detectors characterized by graphite electrodes, which give to the devices considerable advantages like high radiation hardness, perfect mechanical adhesion and good charge collection properties. In this paper the manufacturing of full-carbon devices and their detection performances are illustrated and compared to a reference diamond detector characterized by traditional electrodes.
We report on the first dielectric investigation of high-k yttrium copper titanate thin films, which were demonstrated to be very promising for nanoelectronics applications. The dielectric constant of these films is found to vary from 100 down to 24 (at 100 kHz) as a function of deposition conditions, namely oxygen pressure and film thickness. The physical origin of such variation was investigated in the framework of universal dielectric response and Cole–Cole relations and by means of voltage dependence studies of the dielectric constant. Surface-related effects and charge hopping polarization processes, strictly dependent on the film microstructure, are suggested to be mainly responsible for the observed dielectric response. In particular, the bulky behaviour of thick films deposited at lower oxygen pressure evolves towards a more complex and electrically heterogeneous structure when either the thickness decreases down to 50 nmor the films are grown under high oxygen pressure.
A flow-injection impedimetric immunosensor for the sensitive, direct and label-free detection of cholera toxin is reported. A limit of detection smaller than 10 pM was achieved, a value thousands of times lower than the lethal dose. The developed chips fulfil the requirement of low cost and quick reply of the assay and are expected to enable field screening, prompt diagnosis and medical intervention without the need of specialized personnel and expensive equipment, a perspective of special relevance for use in developing countries. Since the chip layout includes two sensing areas each one with a 2 × 2 sensor array, our biochips can allow statistical or (alternatively) multiplex analysis of biorecognition events between antibodies immobilized on each working electrode and different antigens flowing into the chamber.
In this paper we report on the effects of the insertion of Cr atoms on the electrical and optical properties of indium tin oxide (ITO) films to be used as electrodes in spinpolarized light-emitting devices. ITO films and ITO(80 nm)/Cr-doped ITO(20 nm) bilayers and Cr-doped ITO films with a thickness of 20 nm were grown by pulsed ArF excimer laser deposition. The optical, structural, morphological wand electrical properties of ITO films and ITO/Cr-doped structures were characterized by UV-Visible transmission and reflection spectroscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM) and Hall-effect analysis. For the different investigations, the samples were deposited on different substrates like silica and carbon coated Cu grids. ITO films with a thickness of 100 nm, a resistivity as low as similar to 4 x 10(-4) Omega cm, an energy gap of similar to 4.3 eV and an atomic scale roughness were deposited at room temperature without any post-deposition process. The insertion of Cr into the ITO matrix in the upper 20 nm of the ITO matrix induced variations in the physical properties of the structure like an increase of average roughness (similar to 0.4-0.5 nm) and resistivity (up to similar to 8x10(-4) Omega cm). These variations were correlated to the microstructure of the Cr-doped ITO films with particular attention to the upper 20 nm.
Pb thin films were prepared by pulsed laser deposition on a Si (100) substrate at different growth temperatures to investigate their morphology and structure. The morphological analysis of the thin metal films showed the formation of spherical submicrometer grains whose average size decreased with temperature. X-ray diffraction measurements confirmed that growth temperature influences the Pb polycrystalline film structure. A preferred orientation of Pb (111) normal to the substrate was achieved at 30° C and became increasingly pronounced along the Pb (200) plane as the substrate temperature increased. These thin films could be used to synthesize innovative materials, such as metallic photocathodes, with improved photoemission performances.
In this work, we demonstrate the excitation of surface acoustic waves (SAW) harmonics up to GHz regime in photolitographed devices fabricated on gallium arsenide (GaAs) by acting on the IDT metallization ratio among the finger width and pitch. Specifically, we observed up to the 13th harmonic, which corresponds to a frequency of about 1.7 GHz. Moreover, we employed time-resolved spectroscopy for isolating the shape of the SAW bandpass-filter response (for each harmonic) eliminating the interference between acoustic and electromagnetic waves. Notably, the extracted SAW spectra are characterized by a bandwidth which remains constant for the different harmonic modes, unlike the case of traditional SAW filters (having a 0.5 metallization ratio) where the pass band Delta f = f(0)/n(p) np increases with the working frequency. These results are relevant for applications where high frequencies and multiple harmonics excitation are desirable, or where quantitative measurements of the direct SAW signal are required.
A three-dimensional (3D) ordered superlattice of colloidal iron oxide nanocrystals obtained by magnetic-field-assisted self-assembly has been studied by grazing incidence small-angle X-ray scattering (GISAXS). A new model to simulate and interpret GISAXS patterns is presented, which returns the structural and morphological details of 3D nanocrystal-built supercrystals. The model is applied to a sample with a suitable surface morphology, allowing the observation of “volume diffraction” even at extremely low grazing incidence angle. In this particular case, the average fcc-like stacking of the nanocrystals (building blocks), their spherical shape, and statistical information on their size distribution and positions within the superlattice have been safely deduced. The proposed model is expected to be amendable for the analysis of more complex structures and applicable to a large variety of nanocrystal-based assemblies.
The development of new microfabrication techniques is attracting more and more interest because of the increasing demand for three-dimensional tools with features of biocompatibility, flexibility and low-costs in the lab-on-chip field. Photolithographic techniques involving the molding of organic polymers, like SU-8, allow for short fabrication times and simplicity in devices prototyping. In this paper we used LOR and SU-8 resists in combination within an innovative lithographic approach. LOR resist was employed not as a typical sacrificial layer for the production of free-standing structures but as a three-dimensional solid resist, which can be patterned and embedded in a SU-8 monolith. After dissolution it can form cavities to provide a final multilevel structure. A detailed description of the optimization process required to obtain the final structure and to overcome issues related to the employ of LOR is reported. In the end, a network of working interconnected multilevel microchannels, useful for biological applications, has been realized through a new, cheap and time-saving method.
In this work we present for the first time the fabrication and the characterization of flexible micro cantilevers based on Aluminum Nitride (AlN) as piezoelectric active layer and polyimide as elastic substrate. The AlN thin film, embedded into two layers of Molybdenum (Mo), is grown by sputtering deposition and presents highly c-axis oriented hexagonal crystal structure. The flexible structures are successfully realized by a two masks process, exploiting a silicon support to perform device key fabrication steps together with optimized processes for peeling off and patterning of the flexible layer. The realized flexible cantilevers present a bending downwards because of the residual compressive stress of the Mo/AlN/Mo multilayer on polyimide. The mechanical response of the realized flexible cantilevers has been investigated by piezoresponse measurements and the experimentally obtained first resonance frequency resulted to be around 15 kHz. This value has been compared with simulations of the structures performed by finite element method.
The ligand exchange reaction with pyridine is the standard procedure for the integration of colloidal semiconductor nanocrystals (NCs) in photovoltaic devices; however, for large sized and irregularly shaped branched NCs, such as CdSe@CdTe tetrapods, this procedure can lead to a considerable waste of materials and the aggregation of NCs in the colloidal solution, therefore resulting in the formation of an inhomogeneous film and low device performances. Here, we report on alternative post-deposition treatments with carboxylic acids on films of CdSe@CdTe tetrapod shaped NCs. This approach guarantees the removal of the insulating surfactant, necessary to obtain good charge transport among NCs, while preserving the film integrity. We perform a complete characterization of the nanocrystalline films treated with different carboxylic acids and demonstrate the successful integration of such films in photovoltaic devices, showing a doubled efficiency with respect to the standard ligand exchange procedure. Our approach represents a general route towards the development of NC based devices with improved performances and minimized waste of material.
Proceedings of the International Conference on Trends in Spintronics and Nanomagnetism (TSN 2010) 23–27 May 2010, Lecce, Italy
Nearly amorphous high-k yttrium copper titanate thin films deposited by laser ablation were investigated in both metal-oxide-semiconductor (MOS) and metal-insulator-metal (MIM) junctions in order to assess the potentialities of this material as a gate oxide. The trend of dielectric parameters with film deposition shows a wide tunability for the dielectric constant and AC conductivity, with a remarkably high dielectric constant value of up to 95 for the thick films and conductivity as low as 6 x 10(-10) S cm(-1) for the thin films deposited at high oxygen pressure. The AC conductivity analysis points out a decrease in the conductivity, indicating the formation of a blocking interface layer, probably due to partial oxidation of the thin films during cool-down in an oxygen atmosphere. Topography and surface potential characterizations highlight differences in the thin film microstructure as a function of the deposition conditions; these differences seem to affect their electrical properties.
Among spintronic materials, mixed-valence manganite La(0.7)Sr(0.3)MnO(3) (LSMO) is widely investigated due to its half-metal nature. LSMO thin films were grown by pulsed laser deposition (PLD) onto amorphous silica substrates heated at nearly 600 degrees C. An ArF excimer laser was chosen to induce ablation due to its more energetic photons compared to the other quoted excimer laser sources. Different oxygen pressures were considered in order to study the influence of oxygen on the LSMO optical and electrical properties. In this respect, the visible transparency percentage of the deposited films is found good enough for spin-OLED applications. The absorption coefficient shows an absorption band tunable as a function of the oxygen content. Its energetic location and evolution with the oxygen content demonstrate it originates from radiative transitions between the spin-majority bands separated by the Jahn-Teller distortion. All of this lets relate the deposition oxygen pressure to the Mn(3+) ion content in each film and interpret electrical data. The 200 and 100 nm thick samples exhibit weak metallic transport behavior at room temperature with a resistivity of 4.8 and 6.9 Omega cm, respectively. Concerning the resistivity response versus temperature, the measured low metal-insulator transition temperature (150 K) is related to the sample structural features as involved by the depositions. Two different transport mechanisms describe the conductivity regime of the deposited samples, namely the small polaron variable range hopping (VRH) and the Arrhenius law.
Ferromagnetic materials exhibiting at room temperature combination of good conductivity, magnetic and opto-electronic properties are needed for the development of functional spin-devices. Mixed-valence LSMO is an optimal source of fully spin-polarized carriers and shows a rich physics of magnetic phases and transport mechanisms. Many factors, such as growth temperature, oxygen stoichiometry, temperature-dependent oxygen desorption rate, structural matching between the growing film and substrate, film thickness, and defects, influence the LSMO properties. Stabilization of ferromagnetic and conductive behaviours is linked to structural order. Therefore a growth approach allowing congruent deposition of complex materials under controlled, reproducible and tunable conditions is strongly needed. In this respect pulsed laser deposition reveals a well-suited choice. This review aims to give an overview on LSMO thin film properties, deposition and applications, especially in the emerging organic spintronics.
We review the current research on nanodevices with nanoparticles which present unique challenges in both the realization of well-controlled interfaces at the nanoscale and the ability to adequately characterize their electrical properties. In particular, we discuss the fabrication and electrical characterization of such nanodevices with special attention to devices based on metal and magnetic nanoparticles.
The predicted 22-nm barrier which is seemingly going to put a final stop to Moore’s law is essentially related to the resolution limit of lithography. Consequently, finding suitable methods for fabricating and patterning nanodevices is the true challenge of tomorrow’s electronics. However, the pure matter of moulding devices and interconnections is interwoven with research on new materials, as well as architectural and computational paradigms. In fact, while the performance of any fabrication process is obviously related to the characteristic of the materials used, a particular fabrication technique can put constraints on the definable geometries and interconnection patterns, thus somehow biasing the upper levels of the computing machine. Further, novel technologies will have to account for heat dissipation, a particularly tricky problem at the nanoscale, which could in fact prevent the most performing nanodevice from being practically employed in complex networks. Finally, production costs – exponentially growing in the present Moore rush – will be a key factor in evaluating the feasibility of tomorrow technologies. The possible approaches to nanofabrication are commonly classified into top-down and bottom-up. The former involves carving small features into a suitable bulk material; in the latter, small objects assemble to form more complex and articulated structures. While the present technology of silicon has a chiefly top-down approach, bottom-up approaches are typical of the nanoscale world, being directly inspired by nature where molecules are assembled into supramolecular structures, up to tissues and organs. As top-down approaches are resolution-limited, boosting bottom-up approaches seems to be a good strategy to future nanoelectronics; however, it is highly unlikely that no patterning will be required at all, since even with molecular-scale technologies there is the need of electrically contacting the single elements and this most often happens through patterned metal contacts, although all-molecular devices were also proposed. Here, we will give some insight into both top-down and bottom-up without the intention to be exhaustive, because of space limitations.
We report a design of photocathode, which combines the good photoemissive properties of lead (Pb) and the advantages of superconducting performance of niobium (Nb) when installed into a superconducting radio-frequency gun. The new configuration is obtained by a coating of Nb thin film grown on a disk of Pb via pulsed laser deposition. The central emitting area of Pb is masked by a shield to avoid the Nb deposition. The nanomechanical properties of the Nb film, obtained through nanoindentation measurements, reveal a hardness of 2.8±0.3 GPa, while the study of the electrical resistivity of the film shows the appearance of the superconducting transitions at 9.3 K and 7.3 K for Nb and Pb, respectively, very close to the bulk material values. Additionally, morphological, structural and contamination studies of Nb thin film expose a very low droplet density on the substrate surface, a small polycrystalline orientation of the films and a low contamination level. These results, together with the acceptable Pb quantum efficiency of 2×10−5 found at 266 nm, demonstrate the potentiality of the new concept photocathode.
Films of two fluorinated block copolymers (P(S81-Sz6) and P(S81-Sz11)) were investigated and compared with those of a commercial Teflon-like polymer (PTFE-AF) in the search for novel non-biofouling coatings able to minimize the amount of tear fluid (TF) proteins absorbed on contact lens (CL) surfaces. The adsorption of a solution containing lysozyme, albumin and immunoglobulin G (mimicking the TF composition) on the fluorinated block copolymers was evaluated using a quartz crystal microbalance. P(S81-Sz11) was found to resist protein adsorption more effectively than P(S81-Sz6) and PTFE-AF. The different interaction of P(S81-Sz6) and P(S81-Sz11) with the artificial TF was attributed to creation of a more heterogeneous and moderately hydrophobic surface of the latter polymer film by dynamic contact angle and atomic force microscopy studies. Moreover, deposition of P(S81-Sz11) on a CL-like silicone (PDMS) and a CL thin films demonstrated a protein adsorption reduction of up to 70% relative to pristine PDMS and commercial CL thin films.
Copper (Cu) thin films were deposited on yttrium (Y) substrate by sputtering. During the deposition, a small central area of the Y substrate was shielded to avoid the film deposition and was successively used to study its photoemissive properties. This configuration has two advantages: the cathode presents (i) the quantum efficiency and the work function of Y and (ii) high electrical compatibility when inserted into the conventional radio-frequency gun built with Cu bulk. The photocathode was investigated by scanning electron microscopy to determine surface morphology. X-ray diffraction and atomic force microscopy studies were performed to compare the structure and surface properties of the deposited film. The measured electrical resistivity value of the Cu film was similar to that of high purity Cu bulk. Film to substrate adhesion was also evaluated using the Daimler-Benz Rockwell-C adhesion test method. Finally, the photoelectron performance in terms of quantum efficiency was obtained in a high vacuum photodiode cell before and after laser cleaning procedures. A comparison with the results obtained with a twin sample prepared by pulsed laser deposition is presented and discussed.
Prostate cancer affects a large part of the western male population. The need for an early and accurate detection is thus a great challenge in common clinical practice, but the lack of specificity of the serum marker PSA (Prostate Specific Antigen) is a serious problem since its increased concentration can be related to several abnormalities. PSA, however, is found in serum in both a free and a complexed form with other proteins and the percentage amount of unbound PSA (the free-to-total PSA ratio) can be employed to distinguish prostate cancer from benign prostatic conditions, and also to predict the future risk of prostate cancer. To improve the operating characteristics of current PSA tests and to provide a clinical tool able to run label-free and sensitive analysis, we thus developed a biosensing platform based on Electrochemical Impedance Spectroscopy (EIS), which allows the contemporary detection of free and total PSA on a single biochip, enabling a quick screening for the risk of prostate cancer thanks to the presence of two different immobilized antibodies specific for the different antigens researched.
Synthetic carriers that mimic "natural lipid-based vesicles" (such as micro/nanovesicles, exosomes) have found broad applications in biomedicine for the delivery of biomolecules and drugs. Remarkable advantages of using synthetic carriers include control over the lipid composition, structure and size, together with the possibility to add tracer molecules to monitor their in situ distribution via fluorescence microscopy. Over the past few years, new methods of vesicles production have been developed and optimized, such as those based on microfluidic techniques. These innovative approaches allow us to overcome the limitations faced in conventional methods of liposome preparation, such as size distribution and polydispersity. Herein, a Microfluidic Hydrodynamic Focusing (MHF) device has been used for the production of lipid-based vesicles with different lipid combinations that resemble natural exosomes, such as phosphatidylcholines (PC), cholesterol (Chol), dicetyl phosphate (DCP) and ceramide (Cer). Thanks to a fine control on fluid manipulation, the MHF device allows preparation of vesicles with controlled size, a relevant feature in the emerging field of carrier-assisted cell-delivery. Interestingly, PC/Chol/Cer vesicles exhibit low polydispersity and high stability up to 45 days. Later, quantum dots (QDs) were successfully embedded in these vesicles through the same preparation process. The development of QD-embedded lipid nanovesicles by MHF devices has never been described previously.
We investigate the optical properties of ITO and Cr-doped ITO films deposited at room temperature by pulsed laser deposition onto amorphous SiO2 substrates. Our analysis approach is based on the Tauc's plot method applied to the absorption coefficient estimated by a route realistically describing the film structural features and including the contribution of the non-measurable film–substrate interface. Going beyond the conventional application of the Tauc's plot method, we quote two different transition energies for ITO and Cr-doped ITO and discuss their origin in the framework of a band-structure picture as a function of film thickness, Cr changes of the host ITO dispersion and Cr-doping content. In contrast to the conventional optical ITO description, we account for the existence of direct dipole forbidden transitions between the ITO fundamental band edges, involving different electronic and optical band gaps. Our results and discussion demonstrate that disregarding this theoretically established picture, as occurs in the experimental literature, would lead to conclusions inconsistent with the Cr-induced band occupation and effects on ITO dispersions. Preliminary optical (based on transmittance and reflectance spectra as well as band-tailing effects), electrical and structural inspection of the samples are also considered to check reliability and consistency of our discussion.
The optical response of 200 nm thick La0.7Sr0.3MnO(3 − δ) films, deposited by pulsed laser deposition on amorphous silica substrates heated at nearly 600 °C, under different oxygen pressures (0.1 Pa, 0.5 Pa, 1 Pa, 5 Pa and 10 Pa), is reported. The effects of the oxygen non-stoichiometry are investigated at room temperature dealing with the absorption coefficient and the Tauc's plotmethod rather than conventional optical conductivity. The absorption curves are evaluated by an algorithm able to realistically describe the behavior of thin films without exploiting numerical extrapolations or simplified theoretical models or ab-initio calculations. Optical features, tunable by the growth oxygen pressure, are discussed based on the known theoretical and experimental scenario
Celiac disease (CD) is one of the most common digestive disorders caused by an abnormal immune reaction to gluten. So far there are no available therapies, the only solution is a strict gluten-free diet, which however could be very challenging as gluten can be hidden in many food products. Furthermore an additional problem is related to cross-contamination of nominal gluten-free foods with gluten-based ones during manufacturing. Here we propose a lab on chip platform as a powerful tool to help food manufacturers to evaluate the real amount of gluten in their products by an accurate in-situ control of the production chain and maybe to specify the real gluten content in packages labeling. Our portable gliadin-immunochips, based on an electrochemical impedance spectroscopy transduction method, were first calibrated and then validated for both liquid and solid food matrixes by analyzing different beers and flours. The high specificity of our assay was also demonstrated by performing control experiments on rice and potatoes flours containing prolamin-like proteins. We achieved limit of quantification of 0.5 ppm for gliadin that is 20 times lower than the worldwide limit established for gluten-free food while the method of analysis is faster and cheaper than currently employed ELISA-based methods. Moreover our results on food samples were validated through a mass spectrometry standard analysis.
Increasing the ease and the rapidity of processing in micro and nanotechnology is an ongoing task, which is pursued in both the academic environment for investigation of novel systems and in industry for fabrication of complex circuits on a large scale. In the field of nanoelectronics, the major challenge is to demonstrate a feasible method for device implementation based on individual nanosize objects, such as nanowires, nanotubes and nanocrystals. However, integrating these small objects in a macroscopic circuit is a difficult task. So far, nanostructures have been wired by highly sophisticated techniques not suitable for large-scale integration in macroscopic circuits, such as electron-beam lithography or focused ion-beam deposition. Here we present a 'one-pot' and rapid approach to electrically interconnect individual nanowires from random spatial distribution, with high spatial and positioning resolution and a remarkable reduction in overall fabrication time with respect to the other expensive and laborious techniques. The reliability of such technique is demonstrated by implementing a single semiconductor nanowire device
An important goal of biomedical research is the development of tools for high throughput evaluation of drug effects and cytotoxicity tests. In this respect, electrochemical impedance spectroscopy (EIS) is an emerging technique for on-chip cell-based assays. For cell layers, RET (electron transfer resistence) and C (capacitance) are correlated to cell viability, adhesion and cytoskeleton organization and this approach has been successfully exploited to gain real-time information on cell behaviour. Here, for the first time, impedance based biochips in combination with complementary methodologies (including state-of-the-art AFM, viability test and western blot) are employed to perform a complete characterization of cell morphology and changes induced by copper ions on two cell lines (B104 and HeLa cells). Our results reveal a strong correlation between EIS data and both MTT test and AFM characterization. As a consequence, we expect that such on-chip assays can replace in vitro drug tests based on conventional biochemical methods, being very cheap and reusable and allowing to perform cytotoxicity tests without using any expensive reagent or equipment.
This work deals with the realization and characterization of integrated graphitic contacts on diamond by means of laser irradiation (graphitization), in order to obtain good quality ohmic electrodes for nuclear radiation detectors to be used in high energy physics experiments. Unlike the conventional method used for the electrode production, which requires numerous steps and very well controlled environmental conditions, this alternative technique presents many advantages: the contacts are realized in air at room temperature in a single step. In this study, the characteristics of several graphitic structures realized on a diamond surface by changing the radiation-matter interaction parameters have been evaluated in order to define the best experimental conditions to create graphitic electrodes with low resistivity. The obtained results are promising: contacts perfectly adherent, with good charge collection properties, stable and resistant to ionizing radiation
Quantum dots (QDs) and nanocrystals (NCs) have attracted great attention for applications in nano- and opto-electronics, quantum computation, biosensing, and nanomedicine. Three-dimensional electronic confinement can be achieved based on lateral or vertical QDs in a two-dimensional electron gas, by strain-induced QDs, or by colloidal NCs. In this chapter, we will focus on tunneling spectroscopy on semiconductor QDs and NCs. First, in Sect. 8.2, we will provide a brief introduction on the electronic structure and single-particle wavefunctions of QDs and NCs. Section 8.3 will be dedicated to the fundamentals of electron transport through QDs and NCs: tunneling spectroscopy,Coulomb blockade, shell-tunneling, and shell-filling spectroscopy. In Sects. 8.4 and 8.5, we will report on the status of research in scanning tunneling microscopy and spectroscopy applied to semiconductor QDs and NCs. Key results and recent research directions on wavefunction mapping of individual electronic confinement states will be highlighted. Finally, we will draw conclusions in Sect. 8.6.
Authors aimed to provide a magnetic responsiveness to bone-mimicking nano-hydroxyapatite (n-HA). For this purpose, dextran-grafted iron oxide nanoarchitectures (DM) were synthesized by a green friendly and scalable alkaline co-precipitation method at room temperature and used to functionalize n-HA crystals. Different amounts of DM hybrid structures were added into the nanocomposites (DM/n-HA 1:1, 2:1 and 3:1weight ratio) which were investigated through extensive physicochemical (XRD, ICP, TGA and Zetapotential), microstructural (TEM and DLS), magnetic (VSM) and biological analyses (MTT proliferation assay). X-ray diffraction patterns have confirmed the n-HA formation in the presence of DM as a co-reagent. Furthermore, the addition of DM during the synthesis does not affect the primary crystallite domains of DM/n-HA nanocomposites. DM/n-HAs have shown a rising of the magnetic moment values by increasing DM content up to 2:1 ratio. However, the magnetic moment value recorded in the DM/n-HA 3:1 do not further increases showing a saturation behavior. The cytocompatibility of the DM/n-HA was evaluated with respect to the MG63 osteoblast-like cell line. Proliferation assays revealed that viability, carried out in the absence of external magnetic field, was not affected by the amount of DM employed. Interestingly, assays also suggested that the DM/n-HA nanocomposites exhibit a possible shielding effect with respect to the antiproliferative activity induced by the DM particles alone.
Lower genital tract infections caused by both sexually and not-sexually transmitted pathogens in women are a key public health priority worldwide, especially in developing countries. Since standard analyses are time-consuming, appropriate therapeutic intervention is often neglected or delayed. Lab-on-chips and biosensors open new perspectives and offer innovative tools to simplify the diagnosis by medical staff, especially in countries with inadequate resources. Here we report a biosensing platform based on Electrochemical Impedance Spectroscopy (EIS) that allows multiplexed detection of Candida albicans, Streptococcus agalactiae and Chlamydia trachomatis with a single biochip, enabling a quick screening thanks to the presence of different immobilized antibodies, each specific for one of the different target pathogens.
We report on the fabrication and single electron tunneling behaviour of large scale arrays of nanogap electrodes bridged by bisferrocene-gold nanoparticle hybrids (BFc-AuNP). Coulomb staircase was observed in the low temperature current-voltage curves measured on the junctions with asymmetric tunnel barriers. On the other hand, junctions with symmetric tunneling barrier exhibited mere nonlinear current voltage characteristics without discrete staircase. The experimental results agreed well with simulations based on the orthodox theory. The junction resistance showed thermally activated conduction behaviour at higher temperature. The overall voltage and temperature dependent results show that the transport behaviour of the large arrays of single particle devices obtained by a facile optical lithography and chemical etching process corresponds with the behaviour of single particle devices fabricated by other techniques like e-beam lithography and mechanical breaking methods.
Integrating nanocrystals (NCs) into magnetic tunnel structures is of considerable interest due to expectation of novel properties from their spin selective transport and single electron features. Superstructures by cplloidal NCs having translational and orientational order and interesting collective magnetic properties can be prepared by solution casting through sensitive interparticle and particle-substrate interactions. In this work, we discuss the study on magnetic field induced assembly of mono-dispersed iron oxide NCs to obtain spin filter effect across (he superlattice array, when sandwiched between gold electrodes. The deposition of mixed phase Fe3O4@gamma-Fe2O3 NCs on SiO2/Au surface proceeds through slow solvent evaporation and are studied for controlled interparticle spacing. For specific NC concentration, the ordering depends on the substrate chemistry and the ligands passivating NC surface, which affects the concentration of cluster nuclei formed. In presence of a magnetic field, the tunnel structure exhibits enhanced positive tunnel magnetoresistance at low temperatures, which could be related to their ferromagnetism and the attempts by electrons to percolate NC superlattice with preserved spin. A sign reversal for magnetoresistance is exhibited by the vertical tunnel junctions on raising the temperature.
Recently molecular-scale spintronics attracted large interest. Here, we aim to give an overview of the state-of-the-art and the prospects of the field. Two main device layouts are discussed: spin filter/transistors and spin-valve architectures with respectively one and more magnetic elements. A discussion on fundamentals of spin polarized and single electron tunneling is also provided.
In this paper we report on the growth and structural characterization of very thin (20 nm) Cr-doped ITO films, deposited at room temperature by double-target pulsed laser ablation on amorphous silica substrates. The role of Cr atoms in the ITO matrix is carefully investigated with increasing doping content by transmission electron microscopy (TEM). Selected-area electron diffraction, conventional bright field and dark field as well as high-resolution TEM analyses, and energy dispersive x-ray spectroscopy demonstrate that (i) crystallization features occur despite the low growth temperature and small thickness, (ii) no chromium or chromium oxide secondary phases are detectable, regardless of the film doping levels, (iii) the films crystallize as crystalline flakes forming large-angle grain boundaries; (iv) the observed flakes consist of crystalline planes with local bending of the crystal lattice. Thickness and compositional information about the films are obtained by Rutherford back-scattering spectrometry. Results are discussed by considering the combined effects of growth temperature, smaller ionic radius of the Cr cation compared with the trivalent In ion, doping level, film thickness, the double-target doping technique and peculiarities of the pulsed laser deposition method.
Suitable post-synthesis surface modification of lead-chalcogenide quantum dots (QDs) is crucial to enable their integration in photovoltaic devices. We have developed a solution-phase ligand exchange strategy that exploits arenethiolate anions to replace the pristine oleate ligands on PbS QDs, while preserving the long-term colloidal stability of QDs and allowing their solution-based processability into photoconductive thin-films. Complete QD surface modification is demonstrated by IR spectroscopy analysis, whereas UV-Vis-NIR Absorption Spectroscopy provides quantitative evaluation of stoichiometry and thermodynamic stability of the resulting system. Arenethiolate ligands permit to reduce the inter-particle distance in PbS QD solids, leading to a drastic improvement of the photoinduced charge transport properties. Therefore, smooth dense-packed thin-films of arenethiolate-capped PbS QDs obtained via a single solution-processing step are integrated in heterojunction solar cells: such devices generate remarkable photocurrent densities (14 mA cm(-2)) and overall efficiencies (1.85%), which are outstanding for a single PbS QD layer. Solution-phase surface modification of QDs thus represents an effective intermediate step towards low-cost processing for all-inorganic and hybrid organic/inorganic QD-based photovoltaics. (c) 2013 Elsevier B.V. All rights reserved.
Quantum-dot Cellular Automata (QCA) exploit quantum confinement, tunneling and electrostatic interaction for transistorless digital computing. Implementation at the molecular scale requires carefully tailored units which must obey several structural and functional constraints, ranging from the capability to confine charge efficiently on different 'quantum-dot centers' - in order to sharply encode the Boolean states - up to the possibility of having their state blanked out upon application of an external signal. In addition, the molecular units must preserve their geometry in the solid state, to interact electrostatically in a controlled way. Here, we present a novel class of organometallic molecules, 6-3,6-bis(1-ethylferrocen)-9H-carbazol-9-yl-6-hexan-1- thiols, which are engineered to satisfy all such crucial requirements at once, as confirmed by electrochemistry and scanning tunneling microscopy measurements, and first principles density functional calculations.
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal cancers in Europe and the United States. It has a very low 5 years-survival rate and its diagnosis is often late and imprecise due to the lack of specificity of currently used markers for PDAC. As previously demonstrated PDAC patients’ sera may contain autoantibodies towards phosphorylated a-enolase (ENOA), which in combination with other standard markers can increase specificity in diagnosis of PDAC. In this context we realized a microfluidic platform with integrated EIS biosensors. We achieved a specific antibodies detection by immobilizing onto electrodes peptides corresponding to a portion of ENOA. Phosphorylation of peptides was found to influence the recognition of antibodies in PDAC patients’ sera detected by the developed biochip thus validating the EIS technique as a strong tool for quick, cost-saving and label-free analysis of serum samples. Biochip results are in agreement with those from traditional techniques, such as ELISA and western blot, but measurements are much more sensitive and specific, increasing the possibility of PDAC diagnosis. In addition this approach is faster and more reproducible compared to traditional techniques making the developed biochips ideal for a quick, cost-saving and label-free analysis of serum samples.
Magnetic tunnel junctions sandwiching a superlattice thin film of iron oxide nanocrystals (NCs) have been investigated. The transport was found to be controlled by Coulomb blockade and single-electron tunneling, already at room temperature. A good correlation was identified to hold between the tunnel magnetoresistance (TMR), the expected magnetic properties of the NC arrays, the charging energies evaluated from current−voltage curves, and the temperature dependence of the junction resistance. Notably, for the first time, a switching from negative to positive TMR was observed across the Verwey transition, with a strong enhancement of TMR at low temperatures.
The object of the present invention is to provide an impedimetric biochip for the simultaneous diagnosis of gynecological pathologies related to C. albicans, S. agalactiae or C.trachomatis by using the vaginal fluid of the patient. This invention enables a significant reduction of examination times if compared with the present-day techniques. Another important feature of the present invention is its ability to provide a highly sensitive detection, accurate and specific for the described diseases.
The object of the present invention is to provide an impedimetric biochip for the simultaneous diagnosis of gynecological pathologies related to C. albicans, S. agalactiae or C.trachomatis by using the vaginal fluid of the patient. This invention enables a significant reduction of examination times if compared with the present-day techniques. Another important feature of the present invention is its ability to provide a highly sensitive detection, accurate and specific for the described diseases.
An organic field-effect transistor (T) is described, which comprises: a pair of source and drain electrode (S, D) which are formed on an electrically insulating layer (INS) and which are adapted to operate as the source and the collector of a flow of electric charge-carriers in which the majority carriers are free holes, and a layer of organic conductive material (F) which is disposed between the electrodes (S, D) for the formation of a conduction region through which the flow of charge carriers passes and the resistance of which is modulated by the application of a control voltage to a gate electrode (G) insulated from the conduction region, characterized in that the layer of organic conductive material (F) is a layer of biomolecular conductive material including a film of polypeptides or oligopeptides (P) .; The method for the manufacture of a transistor of this type comprises the formation of a film (F) of polypeptides or oligopeptides (P) on the electrically insulating layer (INS) in contact with the source and drain- electrodes (S, D) by immobilization of the polypeptides/oligopeptides (P) on the layer (INS) by deposition of a buffer solution of polypeptides/oligopeptides (P) , subsequent incubation for a predetermined period of time and at a predetermined temperature, removal of the buffer solution, and drying by exposure to a stream of gas.
Condividi questo sito sui social