Effettua una ricerca
FONDAZIONE CENTRO EURO-MEDITERRANEO SUI CAMBIAMENTI CLIMATICI
Acronimo
CMCC
Partita Iva
03873750750
Codice ATECO
72.19.09
RICERCA SCIENTIFICA E SVILUPPO
Data di costituzione
Non Disponibile
Descrizione sintetica dell'oggetto sociale
CMCC is committed to inform and facilitate the dialogue between scientists, decision makers and the general public to support decisions and actions for the benefit of society and environment. CMCC is committed to encourage discipline convergence to spur new and creative ideas and to ensure that environmental observations, analyses, predictions and services most effectively meet the needs of society. CMCC is an equal opportunity employer, actively promoting diversity in the workplace. CMCC is a non advocacy institution.
The WASSERMed project will analyse, in a multi-disciplinary way, ongoing and future climate induced changes in hydrological budgets and extremes in southern Europe, North Africa and the Middle East under the frame of threats to national and human security. A climatic and hydrological component directly addresses the reduction of uncertainty and quantification of risk. This component will provide an interface to other climatologic projects and models, producing climate change scenarios for the Mediterranean and Southern Europe, with special emphasis on precipitation. Five case studies will be considered: 1) Syros Island (Greece), 2) Sardinia Island (Italy), 3) Merguellil watershed (Tunisia), 4) Jordan river basin, and 5) the Nile River system (Egypt). The case studies are illustrative and represent situations which deserve special attention, due to their relevance to national and human security. Furthermore, impacts on key strategic sectors, such as agriculture and tourism, will be considered, as well as macroeconomic implications of water availability in terms of regional income, consumption, investment, trade flows, industrial structure and competitiveness. WASSERMed is an interdisciplinary project, which overall aims at all three targets of the call, through the integration of climate change scenarios, holistic water system modelling and interdisciplinary impact assessment, with three main contributions: a) Integration of climate change scenarios, holistic water system modelling. This provides results for reduction of uncertainties of climate change impacts on hydrology in the identified regions; b) Interdisciplinary approach, coupling macroeconomic implications and technical indicators. This provides a better assessment of climate effects to water resources, water uses and expected security risks; c) Proposal of specific adaptation measures for key sectors of the Mediterranean economy. This provides better basis for achieving water security.
The role of the African continent in the global carbon cycle, and therefore in climate change, is increasingly recognised. Despite the increasingly acknowledged importance of Africa in the global carbon cycle and its high vulnerability to climate change there is still a lack of studies on the carbon cycle in representative African ecosystems (in particular tropical forests), and on the effects of climate on ecosystem-atmosphere exchange. In the present proposal we want to focus on these spoecifc objectives : 1. Understand the role of African tropical rainforest on the GHG balance of the atmosphere and revise their role on the global methane and N2O emissions. 2. Determine the carbon source/sink strength of African tropical rainforest in the pre-industrial versus the XXth century by temporal reconstruction of biomass growth with biogeochemical markers 3. Understand and quantify carbon and GHG fluxes variability across African tropical forests (west east equatorial belt) 4.Analyse the impact of forest degradation and deforestation on carbon and other GHG emissions
Climate change can disrupt ecological, social and economic systems, with some regions and sectors suffering significantly. Therefore, adaptation plays a paramount role in responding to climate change. Progress has been made, but there are still important obstacles. Knowledge of the benefits and costs of adaptation is sparse, unsystematic and unevenly distributed across sectors and countries. Planning suffers from substantial uncertainties in terms of precise impacts. It is also difficult to reconcile the bottom-up nature of adaptation with top-down strategic policy making on adaptation. To address these challenges BASE will: Improve adaptation knowledge availability, integration and utilization Case studies will be used to understand facilitators of, and barriers to, adaptation. Over 20 cases have been selected to cover the diversity of adaptation, simultaneously paying attention to the need for generalization and comparability. The gap between top-down strategic assessments of costs and benefits and empirical context-sensitive bottom-up analyses will be bridged using novel combinations of models and qualitative analyses. Promote and strengthen stakeholder participation in adaptation BASE will support stakeholder involvement through novel participatory and co-design techniques. Successful bottom-up initiatives will be studied, and the use of knowledge, two-way learning, the role of social media and other awareness raising methods and tools will be explored. Support coherent, multi-level, multi-sector integrated adaptation policies BASE will provide policy guidelines by integrating lessons from past experiences, case studies, insights provided by modeling and stakeholder participation. Issues of multilevel, cross sectoral and inter-temporal governance that are presently weakly tackled will be highlighted. Potential conflicts and synergies of adaptation with other important policies will be explored to overcome constraints caused by context-related inertias.
'Like any living system, urban communities consume material and energy inputs, process them into usable forms, and eliminate the wastes from the process. This can be seen as 'metabolism' of industry, commerce, municipal operations, and households. Understanding the pattern of these energy and material flows through a community's economy provides a systemic reading of the present situation for goal and objective setting and development of indicators for sustainability. At present, planning policies often reflect the logic of the market. They would better reflect a vision of urban development, in which environmental and social considerations are fully embedded in spatial planning policies at all steps of the policy cycle from problem identification and policy design through to the implementation and ex-post evaluation stages. Therefore, the widespread inclusion of sustainability objectives in urban planning at all scales (from regional to site level) is necessary, providing the opportunity for the incorporation of bio-physical sciences knowledge into the planning process on a routine basis. To this end, the proposed project BRIDGE (sustainaBle uRban plannIng Decision support accountinG for urban mEtabolism) aims at bridging the gap between bio-physical sciences and urban planners and to illustrate the advantages of accounting for environmental issues on a routine basis in design decisions. BRIDGE will provide the means to quantitative estimate the various components of the urban metabolism (observation of physical flows and modelling), the means for quantitative estimate their impacts (socio-economic and environmental impact assessments and indicators), as well as the means for resource optimisation in urban fabric (support the decision making in urban planning). BRIDGE will focus on the interrelation between energy and material flows and urban structure.'
'Climate Change is one of the most important issues facing the world in the 21st century and challenges all four (ecological, economical, social and cultural) dimensions of sustainable development. Europe takes a leading role in the necessary response to these challenges. Severe impacts are unavoidable and European adaptation strategies must be supported by a coherent base of knowledge on its key vulnerabilities and response options. Such a base can only be generated by European, national and regional policy-relevant research. It is CIRCLE-2 ERA-Net prime objective to contribute to those efforts by aligning and networking national and regional research funding and managing organisations as well as their respective programmes. CIRCLE-2 will support a common research agenda and share good practices on adaptation with national and European decision makers, thus contributing to the envisaged EU Clearing House on Climate Change Impacts Vulnerability and Adaptation (CCIVA). CIRCLE-2 (CSA-CA) builds on the experience of previous coordinating and support actions (i.e. CIRCLE CA and SSA) and will develop its activities through a now enlarged network of 23 countries and 3 regions. A flexible work plan will LEAD the consortium to identify common policy-relevant CCIVA research needs. Those needs will serve to DESIGN a joint research agenda and deepen the networking and cooperation activities of the consortium. CIRCLE-2 will FUND transnational joint research initiatives including joint calls for projects on CCIVA. The outcomes of these initiatives and projects will provide the consortium with an updated knowledge base on European, National and Regional CCIVA research and CIRCLE-2 will SHARE this knowledge base with decision-makers at all relevant scales. CIRCLE-2 will thus contribute to the development of both European and national Climate Change response frameworks (e.g. Adaptation Strategies) by facilitating research outputs tailor-made to common needs. International cooperation with non-European countries (e.g. developing countries) as well as the involvement of new EU Member States and candidate countries will be particularly encouraged throughout CIRCLE-2 lifetime.'
'CLIM-RUN aims at developing a protocol for applying new methodologies and improved modeling and downscaling tools for the provision of adequate climate information at regional to local scale that is relevant to and usable by different sectors of society (policymakers, industry, cities, etc.). Differently from current approaches, CLIM-RUN will develop a bottom-up protocol directly involving stakeholders early in the process with the aim of identifying well defined needs at the regional to local scale. The improved modeling and downscaling tools will then be used to optimally respond to these specific needs. The protocol is assessed by application to relevant case studies involving interdependent sectors, primarily tourism and energy, and natural hazards (wild fires) for representative target areas (mountainous regions, coastal areas, islands). The region of interest for the project is the Greater Mediterranean area, which is particularly important for two reasons. First, the Mediterranean is a recognized climate change hot-spot, i.e. a region particularly sensitive and vulnerable to global warming. Second, while a number of countries in Central and Northern Europe have already in place well developed climate service networks (e.g. the United Kingdom and Germany), no such network is available in the Mediterranean. CLIM-RUN is thus also intended to provide the seed for the formation of a Mediterranean basin-side climate service network which would eventually converge into a pan-European network. The general time horizon of interest for the project is the future period 2010-2050, a time horizon that encompasses the contributions of both inter-decadal variability and greenhouse-forced climate change. In particular, this time horizon places CLIM-RUN within the context of a new emerging area of research, that of decadal prediction, which will provide a strong potential for novel research.'
Africa is probably the most vulnerable continent to climate change and climate variability and shows diverse range of agro-ecological and geographical features. Thus the impacts of climate change can be very high and will greatly differ across the continent, and even within countries. There is a urgent need for the most appropriate and up-to-date tools to better understand and predict climate change, assess its impact on African ecosystems and population, and develop the correct adaptation strategies. In particular the current proposal will focus on the following specific objectives: 1- Develop improved climate predictions on seasonal to decadal climatic scales, especially relevant to SSA; 2- Assess climate impacts in key sectors of SSA livelihood and economy, especially water resources and agriculture; 3- Evaluate the vulnerability of ecosystems and civil population to inter-annual variations and longer trends (10 years) in climate; 4- Suggest and analyse new suited adaptation strategies, focused on local needs; 5- Develop a new concept of 10 years monitoring and forecasting warning system, useful for food security, risk management and civil protection in SSA; 6- Analyse the economic impacts of climate change on agriculture and water resources in SSA and the cost-effectiveness of potential adaptation measures. This objectives will be achieved by an integrated working approach that involves 9 European, 8 African and 1 International Organization.
Fundamental trends in the European Union and the world at large provide an increasingly important policy agenda for financing sustainable energy in terms of energy efficiency, innovation in energy exploitation and development of renewable resources. The long-range forecasts for investments and energy market are determined by highly interconnected environmental, geological and technological research despite scientific differences in modelling the scenarios and interpreting the data. The medium-range forecasts for investments and energy market largely depend on geopolitical considerations and internal pressure by public opinion and stakeholders. States, firms and other actors play their game within the current legal framework at the international, regional and national level. Accordingly, the proper policy design for the sustainable energy needs to be complemented by research on the legal, regulatory and geopolitical side. However, the characteristics of social sciences which drive their approach to such issues are determined by their fragmentation into sectoral domains and national traditions. It is commonly agreed that there are great benefits in overcoming the disciplinary divisions combining scientific, social and economic considerations in order to assess the policy impact of sustainable energy. The evaluation of the policies for sustainable energy investments requires to connect several national approaches on such topics, not only in Europe, where the fragmentation of social sciences into national traditions is a matter of fact. In turn, the global nature of the questions addressed by the project needs to be implemented through an IRSES programme in order to strengthen the research partnerships between European research organisations and research organisations from crucial world regions as far as European interests for energy matters are concerned.
The CLARIS LPB Project aims at predicting the regional climate change impacts on La Plata Basin (LPB) in South America, and at designing adaptation strategies for land-use, agriculture, rural development, hydropower production, river transportation, water resources and ecological systems in wetlands. In order to reach such a goal, the project has been built on the following four major thrusts. First, improving the description and understanding of decadal climate variability is of prime importance for short-term regional climate change projections (2010-2040). Second, a sound approach requires an ensemble of coordinated regional climate scenarios in order to quantify the amplitude and sources of uncertainties in LPB future climate at two time horizons: 2010-2040 for adaptation strategies and 2070-2100 for assessment of long-range impacts. Such coordination will allow to critically improve the prediction capacity of climate change and its impacts in the region. Third, adaptation strategies to regional scenarios of climate change impacts require a multi-disciplinary approach where all the regional components (climate, hydrology, land use, land cover, agriculture and deforestation) are addressed in a collaborative way. Feedbacks between the regional climate groups and the land use and hydrology groups will ensure to draw a first-order feedback of future land use and hydrology scenarios onto the future regional climate change. Fourth, stakeholders must be integrated in the design of adaptation strategies, ensuring their dissemination to public, private and governmental policy-makers. Finally, in continuity with the FP6 CLARIS Project, our project will put a special emphasis in forming young scientists in European institutes and in strengthening the collaborations between European and South American partners. The project is coordinated with the objectives of LPB, an international project on La Plata Basin that has been endorsed by the CLIVAR and GEWEX Panels.
'The European integrating project COMBINE brings together research groups to advance Earth system models (ESMs) for more accurate climate projections and for reduced uncertainty in the prediction of climate and climate change in the next decades. COMBINE will contribute to better assessments of changes in the physical climate system and of their impacts in the societal and economic system. The proposed work will strengthen the scientific base for environmental policies of the EU for the climate negotiations, and will provide input to the IPCC/AR5 process. COMBINE proposes to improve ESMs by including key physical and biogeochemical processes to model more accurately the forcing mechanisms and the feedbacks determining the magnitude of climate change in the 21st century. For this purpose the project will incorporate carbon and nitrogen cycle, aerosols coupled to cloud microphysics and chemistry, proper stratospheric dynamics and increased resolution, ice sheets and permafrost in current Earth system models. COMBINE also proposes to improve initialization techniques to make the best possible use of observation based analyses of ocean and ice to benefit from the predictability of the climate system in predictions of the climate of the next few decades. Combining more realistic models and skilful initialization is expected to reduce the uncertainty in climate projections. Resulting effects will be investigated in the physical climate system and in impacts on water availability and agriculture, globally and in 3 regions under the influence of different climate feedback mechanisms. Results from the comprehensive ESMs will be used in an integrated assessment model to test the underlying assumptions in the scenarios, and hence to contribute to improved scenarios. COMBINE will make use of the experimental design and of the scenarios proposed for IPCC AR5. Therefore the project will be able to contribute to the AR5, by its relevant research and by the contribution of experiments to the IPCC data archives.'
The EUBrazilCC project is a first step towards providing a user-centric, cross-Atlantic test bench for European & Brazilian research communities. EUBrazilCC is centred in practical scientific use cases, and it is built on a close collaboration among European & Brazilian excellence centres. EUBrazilCC will exploit & coordinate, in a 2 year project, existing heterogeneous e-Infrastructures (virtualized datacentres, supercomputers and opportunistic resources) with more than 5500 CPU and 17000 GPU cores.EUBrazilCC includes 3 multidisciplinary & highly complementary scenarios, covering Epidemiology, Health, Biodiversity, Natural Resources & Climate Change. All those scientific scenarios involve complex workflows & access to huge datasets. EUBrazilCC will leverage from the experience in Brazil & Europe for the federation of resources (JiT Cloud, OurGrid, CSGrid and InterCloud), programming environments & scientific gateways (mc2, COMPSs, eScienceCentral) & distributed scientific data access (parallel data analysis).For the use cases, EUBrazilCC involves lead institutions, such as FIOCRUZ, world leader in Leishmaniasis; BSC, developer of the heart simulator Alya, which received an HPC Innovation Excellence Award; & CMCC, key node in the Earth System Grid Federation.EUBrazilCC defines a strong, networked dissemination to promote the infrastructure among new communities, leveraging from the networks of SINAPAD and Brazilian National Institutes of Science and Technology, LifeWatch-ESFRI & the European Network for Earth System Modelling.The project incorporates a specific interoperability task involving Helix-Nebula initiative and EGI & it will exploit the opportunities in mobility for the cooperation among the partners, such as 'Science without borders'. Finally, EUBrazilCC defines a focus on sustainability through dedicated tasks related to draw an exploitation plan for the platform & the 3 use cases whilst adhering to the adoption of international standards.
Production of an extended climate reanalysis of the 20th century, with consistent descriptions of the global atmosphere, ocean, land-surface, cryosphere, and the carbon cycle. Production of a new reanalysis of the satellite era with near-real time data updates for climate monitoring. Research and development in various aspects of coupled data assimilation to improve the use of observations in future fully coupled earth-system reanalysis productions. Preparation of input data sets required for reanalysis, including uncertainty assessments, homogenisation, data reprocessing. Data rescue activities aimed at improving climate reanalysis capabilities, including imaging and digitisation of historic in-situ observations as well as recovery and assessment of early satellite data records. Development of data services and visualisation tools for reanalysis output products, and for the observations used to create them.
INDO-MARECLIM capitalizes on the Norwegian institutional establishment, infrastructure and network of scientific cooperation built up India since 1998 around the Nansen Environmental Research Centre-India (NERCI) in Kerala, India. INDO-MARECLIM aims at facilitating and improving the co-operation between the European Union Members States and Associated Countries and India and includes partners from UK, France, Italy, the Netherlands and Norway, involved in research topics of relevance to India. The project objective is to use and extend NERCI as a joint research facility for scientific co-operation between India and the European Union member states and associated countries in the areas of monsoon climate variability, marine ecosystems and coastal management including impact on society. INDO-MARECLIM will organize and host workshops and summer school inviting European and Indian scientists, post-docs and PhDs. INDO-MARECLIM will define, prepare and submit competitive new joint scientific research projects in cooperation between Indian and European research institutions to national and international funding agencies, including EU. INDO-MARECLIM prepares the way for institutional arrangements at NERCI to include research organizations from additional Member States and Associated Countries strengthening and sustaining the scientific cooperation between Europe and India. The project is built on six work packages; (1) Project management, (2) Indo-European research facilities for studies on marine ecosystem and climate in India, (3) Strengthen the INDO-MARECLIM partnership and building network of cooperation between Europe and India, (4) Organizing and hosting of summer schools for PhD and Post-docs, (5) Development of joint Indo-European research project proposals and (6) Opening the INDO-MARECLIM institutional arrangements to additional European partners.
The resilience of critical infrastructures (CI) to Extreme Weather Events (EWE) is one of the most salient and demanding challenges facing society. Growing scientific evidence suggests that more frequent and severe weather extremes such as heat waves, hurricanes, flooding and droughts are having an ever increasing impact, with the range and effects on society exacerbated when CI is disrupted / destroyed. EWE causing (cascaded) CI outages frequently cause major social and economic loss in disasters. The provisions and procedures to reduce their impact and consequences have often proved inadequate. The probability of exposure to EWE is expected to increase, both in frequency and intensity. Obviously, there is a need to build anticipatory adaptation and organizational resilience to these relatively unforeseen and unexpected EWE impacts on CI. Hence, allowing for future EWE in the design and operational parameters of new and current CI is of fundamental and pressing strategic importance, to ensure cost effective fit, for purpose CI over the lifetime of the assets. There is an obligation to revisit the risk posed to new and existing CI and to develop practical (evidence based) responses by risk-based techniques and a set of validated tools and data sets tailored to practical needs reflecting the level of the risk and the severity of impact (social, economic, environmental, etc.) that would result in CI failure due to EWE. INTACT recognizes that a European-wide coordinated and cooperative effort is required. INTACT is a strong, multidisciplinary consortium and offers a cross disciplinary, multi-jurisdictional systematic approach and a wealth of cutting edge, practical experience across the full range of technical disciplines, geographical regions, climatic conditions and infrastructure types.
LUC4C will advance our fundamental knowledge of the climate change - land use change interactions, and develop a framework for the synthesis of complex earth system science into guidelines that are of practical use for policy and societal stakeholders. Policies in support of climate change mitigation through land management, and the societal demand for other services from terrestrial ecosystems are currently rather disconnected, in spite of the large potential for co-benefits, but also the need for trade-offs. To identify the beneficial and detrimental aspects of alternative land use options, we will improve and evaluate a suite of modelling approaches at different levels of integration and complexity in order to (i) discern key elements of land-use that have the largest effect on climate, including dependencies across time and space, (ii) develop innovative methods to better quantify the dynamic interactions between land use and the climate system at different time and space scales, and (iii) deliver a portfolio of best practice guidelines for the identification of trade-offs, benefits or adverse effects of land-based mitigation policy options across different scenarios. In particular, LUC4C aims to: 1. enhance our ability to understand the societal and environmental drivers of land use and land cover change (LULCC) relevant to climate change; 2. assess regional and global effects of different mitigation policies and adaptation measures within alternative socio-economic contexts; 3. quantify how the LULCC-climate change interplay affects regional vs. global, and biophysical vs. biogeochemical ecosystem-atmosphere exchange, and how the relative magnitude of these interactions varies through time; 4. advance our ability to represent LULCC in climate models; 5. assess LULCC-climate effects on multiple land ecosystem services and analyse these in relation to other societal needs that provide either a synergy or trade-off to climate mitigation and adaptation.
Fire regimes result from interactions between climate, land-use and land-cover (LULC), and socioeconomic factors, among other. These changed during the last decades, particularly around the Mediterranean. Our understanding of how they affected fire regime in the past is limited. During this century temperatures, drought and heat waves will very likely increase, and rainfall decrease. These and further socioeconomic change will affect LULC. Additional areas will be abandoned due to being unsuitable for agriculture or other uses. Fire danger and fire hazard are very likely to increase, affecting fire regimes. FUME will learn from the past to understand future impacts. Mod. 1 we will study how LULC and socioeconomics changed and how climate and weather affected fire in dynamically changing landscapes. Fires will be mapped throughout Europe to determine hazard burning functions for LULC types. Since climate has changed, an attempt to attribute (sensu IPCC) fire regime change to climate, differentiating it from socioeconomic change, will be made. Mod. 2 will produce scenarios of change (climate, including extremes, land-use land-cover, socioeconomics, vegetation) for various emissions pathways and three time-slices during this century. With these and results from Mod.1, models and field experiments projected impacts on fire-regime and vegetation vulnerabilities will be calculated, including climate extremes (drought, heat-waves). Mod. 3 will investigate adaptation options in fire- and land-management, including restoration. Fire prevention and fire fighting protocols will be tested/developed under the new conditions to mitigating fire risks. A company managing fire will be a key player. Costs and policy impacts of changes in fire will be studied. Research will focus on old and new fire areas, the rural interface, whole Europe and the Mediterranean, including all Mediterranean countries of the world. Users will be involved in training and other activities.
'The general objective of PRACTICE is to link S & T advances and traditional knowledge on prevention and restoration practices to combat desertification with sound implementation, learning and adaptive management, knowledge sharing, and dissemination of best practices. Specific objectives are: 1. To create an international platform of long-term monitoring sites for assessing and investigating practices to combat desertification. 2. To develop integrated evaluation tools to assess the cost-effectiveness of practices to combat desertification, taking into account changes in both biophysical and socio-economic properties, by synergistically exploiting the recent advances on assessment and evaluation methodologies and approaches. 3. To assess prevention and restoration practices to combat desertification for croplands, rangelands and woodlands, considering the impacts on socio-economic status, soil functions, biodiversity, and ecosystem services. 4. To identify and document best practices to combat desertification considering multiple purposes at different spatial (local to global) scales, and to establish cost-effective thresholds for the various management alternatives. 5. To develop education material and translational science strategies, and implement innovative participatory approaches to link science to society, to share and transfer evaluation methods and best practices, addressing and involving stakeholders at all levels, from farmers to local organisations, to national and international bodies.'
SafeLand will develop generic quantitative risk assessment and management tools and strategies for landslides at local, regional, European and societal scales and establish the baseline for the risk associated with landslides in Europe, to improve our ability to forecast landslide hazard and detect hazard and risk zones. The scientific work packages in SafeLand are organised in five Areas: Area 1 focuses on improving the knowledge on triggering mechanisms, processes and thresholds, including climate-related and anthropogenic triggers, and on run-out models in landslide hazard assessment; Area 2 does an harmonisation of quantitative risk assessment methodologies for different spatial scales, looking into uncertainties, vulnerability, landslide susceptibility, landslide frequency, and identifying hotspots in Europe with higher landslide hazard and risk; Area 3 focuses on future climate change scenarios and changes in demography and infrastructure, resulting in the evolution of hazard and risk in Europe at selected hotspots; Area 4 addresses the technical and practical issues related to monitoring and early warning for landslides, and identifies the best technologies available both in the context of hazard assessment and in the context of design of early warning systems; Area 5 provides a toolbox of risk mitigation strategies and guidelines for choosing the most appropriate risk management strategy. Maintaining the database of case studies, dissemination of the project results, and project management and coordination are defined in work packages 6, 7 and 8.
The main objective of the MyOcean2 project will be to operate a rigorous, robust and sustainable Ocean Monitoring and Forecasting component of the GMES Marine Service (OMF/GMS) delivering ocean physical state and ecosystem information to intermediate and downstream users in the areas of marine safety, marine resources, marine and coastal environment and climate, seasonal and weather forecasting. This is highly consistent with the objective of the FP7 Space Work Programme to support a European Space Policy focusing on applications such as GMES (Global Monitoring for Environment and Security), with benefits for citizens, but also other space foundation areas for the competitiveness of the European space industry. In the period from April 2012 to September 2014, MyOcean2 will ensure a controlled continuation and extension of the services and systems already implemented in MyOcean, a previous funded FP7 project that has advanced the pre-operational marine service capabilities by conducting the necessary research and development. To enable the move to full operations as of 2014, MyOcean2 is targeting the prototype operations, and developing the necessary management and coordination environment, to provide GMES users with continuous access to the GMES service products, as well as the interfaces necessary to benefit from independent R&D activities. MyOcean2 will produce and deliver services based upon the common-denominator ocean state variables that are required to help meet the needs for information of those responsible for environmental and civil security policy making, assessment and implementation. MyOcean2 is also expected to have a significant impact on the emergence of a technically robust and sustainable GMES service infrastructure in Europe and significantly contribute to the environmental information base allowing Europe to independently evaluate its policy responses in a reliable and timely manner
The overall scientific objectives of PERSEUS are to identify the interacting patterns of natural and human-derived pressures on the Mediterranean and Black Seas, assess their impact on marine ecosystems and, using the objectives and principles of the Marine Strategy Framework Directive as a vehicle, to design an effective and innovative research governance framework based on sound scientific knowledge. Well-coordinated scientific research and socio-economic analysis will be applied at a wide-ranging scale, from basin to coastal. The new knowledge will advance our understanding on the selection and application of the appropriate descriptors and indicators of the MSFD. New tools will be developed in order to evaluate the current environmental status, by way of combining monitoring and modelling capabilities and existing observational systems will be upgraded and extended. Moreover, PERSEUS will develop a concept of an innovative, small research vessel, aiming to serve as a scientific survey tool, in very shallow areas, where the currently available research vessels are inadequate. In view of reaching Good Environmental Status (GES), a scenario-based framework of adaptive policies and management schemes will be developed. Scenarios of a suitable time frame and spatial scope will be used to explore interactions between projected anthropogenic and natural pressures. A feasible and realistic adaptation policy framework will be defined and ranked in relation to vulnerable marine sectors/groups/regions in order to design management schemes for marine governance. Finally, the project will promote the principles and objectives outlined in the MSFD across the SES. Leading research Institutes and SMEs from EU Member States, Associated States, Associated Candidate countries, non-EU Mediterranean and Black Sea countries, will join forces in a coordinated manner, in order to address common environmental pressures, and ultimately, take action in the challenge of achieving GES.
IS-ENES2 is the second phase project of the distributed e-infrastructure of models, model data and metadata of the European Network for Earth System Modelling (ENES). This network gathers together the European modelling community working on understanding and predicting climate variability and change. ENES organizes and supports European contributions to international experiments used in assessments of the Intergovernmental Panel on Climate Change. This activity provides the predictions on which EU mitigation and adaptation policies are built. IS-ENES2 further integrates the European climate modelling community, stimulates common developments of software for models and their environments, fosters the execution and exploitation of high-end simulations and supports the dissemination of model results to the climate research and impact communities. IS-ENES2 implements the ENES strategy published in 2012 by: extending its services on data from global to regional climate models, supporting metadata developments based on the FP7 METAFOR project, easing access to climate projections for studies on climate impact and preparing common high-resolution modeling experiments for the large European computing facilities. IS-ENES2 also underpins the community’s efforts to prepare for the challenge of future exascale architectures. IS-ENES2 combines expertise in climate modelling, computational science, data management and climate impacts. The central point of entry to IS-ENES2 services, the ENES Portal, integrates information on the European climate models and provides access to models and software environments needed to run and exploit model simulations, as well as to simulation data, metadata and processing utilities. Joint research activities improve the efficient use of high-performance computers and enhance services on models and data. Networking activities increase the cohesion of the European ESM community and advance a coordinated European Network for Earth System modelling.
Around European coastal seas, the number of marine observing systems is quickly increasing under the pressure of both monitoring requirements and oceanographic research. Present demands for such systems include reliable, high-quality and comprehensive observations, automated platforms and sensors systems, as well as autonomy over long time periods. In-situ data collected, combined with remote sensing and models output, contribute to detect, understand and forecast the most crucial coastal processes over extensive areas within the various national and regional marine environments. Coastal observations are an important part of the marine research puzzle of activities and applications. However significant heterogeneity exists in Europe concerning technological design of observing systems, measured parameters, practices for maintenance and quality control, as well as quality standards for sensors and data exchange. Up to now, the expansion of “coastal observatories” has been driven by domestic interests and mainly undertaken through short-term research projects. Therefore the main challenge for the research community is now to increase the coherence and the sustainability of these dispersed infrastructures by addressing their future within a shared pan-European framework. This is the main objective of JERICO, which proposes a Pan European approach for a European coastal marine observatory network, integrating infrastructure and technologies such as moorings, drifters, ferrybox and gliders. Networking activities will lead to the definitions of best practices for design, implementation, maintenance and distribution of data of coastal observing systems, as well as the definition of a quality standard. Harmonisation and strengthening coastal observation systems within EuroGOOS regions will be sought. Unique twin Trans National Access experiments will be carried out in order to reveal the potential of datasets used in synergy. Central coastal infrastructure in Europe will be opened for international research. This will among other benefits GMES and European contribution to climate change research. New joint research will be conducted in order to identify new and strategic technologies to be implemented in the next generation European coastal observatories. Focus is given on emerging technologies and the biochemical compartment. JERICO intends to contribute to the international and global effort on climate change research (GEOSS), to provide coastal data inputs for operational ocean observing and forecasting, and also to answer to some of the needs of the environmental research and societal communities.
MyOcean is THE PROJECT to set up infrastructures, services and resources to prepare the operational deployment of first Marine Core Services. My Ocean answers to the topic SPA.2007.1.1.01 - development of upgraded capabilities for existing GMES fast-track services and related (pre)operational services. MyOcean is proposed by a consortium of 67 partners spread in maritime countries: - federated around a core team of MCS operators - connected to Key R&D players with independent experts - rich of key intermediate users ready to commit to the service validation and promotion and play the role of beta-testers. My Ocean is not “the MCS” but shall provide the major building blocks and umbrella to allow the operational deployment of a full MCS in cooperation with external providers (National Met services, EMSA, …). MyOcean proposes to set an incremental logic and a governance to remain sustainable after the project and able to welcome new science and new services. The project includes the following tasks: - The definition of a first set of operational Marine Core Services, first package of an enlarged MCS portfolio - The operational development of European upgraded capacities acting as a common denominator for Member States, EU needs for reference marine information - The pre-operational validation of these MCS infrastructures and services and their formal commissioning - The marketing and promotion of Marine Core Services for use widening - The elaboration of a committed organisation to support at long term MCS operations, evolution and research. My Ocean inherits, benefits and pursues a European operational oceanography strategy started within EUROGOOS networks, and progressively implemented through subsequent projects: MERSEA Strand1, MERSEA, BOSS4. BOSS4 will provide a Version 0 of Marine Core Services fast tracks. MyOcean work plan shall cover the development, validation and pre-operations of the following versions of MCS V1 and V2.
The overall objective of this Coordination and Support Action is to coordinate and support the development and the implementation plans of the Joint Programming Initiative ‘Connecting Climate Knowledge for Europe’ (JPI Climate). The CSA will serve as a tool integrated in JPI Climate to enable it to address the challenges of climate change. Hence, it will contribute to the EU objective of building the European Research Area through enhanced cooperation and coordination of national research programmes. The CSA will coordinate preparatory activities within JPI Climate and will support the capacity-building process, with the aim of shortening the time required to reach the implementation phase. This will be done by further developing the common strategic research agenda and by refining the mapping exercise. With regard to the implementation a general concept for JPI Climate as a whole will be developed with preparing a catalogue of possible joint activities, developing and revising implementation schemes. Another main task of the CSA will be developing of a network strategy and the establishment of JPI Climate as the leading European platform to align policies in the area of climate research. This includes the coordination and development of synergies with the existing research and innovation schemes in the EU. The development of a strategy how to engage with member states not yet involved in JPI Climate and involve international institutions outside of Europe will complement this task. Further, the adaptation of the Framework Conditions will be an important step towards the implementation of JPI Climate. An appropriate use of the research findings requires effective communication strategies (web-sites, conferences, brochures). Therefore, the development of an optimized dissemination strategy will be part of the CSA as well.
Increases of atmospheric CO2 and associated decreases in seawater pH and carbonate ion concentration this century and beyond are likely to have wide impacts on marine ecosystems including those of the Mediterranean Sea. Consequences of this process, ocean acidification, threaten the health of the Mediterranean, adding to other anthropogenic pressures, including those from climate change. Yet in comparison to other areas of the world ocean, there has been no concerted effort to study Mediterranean acidification, which is fundamental to the social and economic conditions of more than 130 million people living along its coastlines and another 175 million who visit the region each year. The MedSeA project addresses ecologic and economic impacts from the combined influences of anthropogenic acidification and warming, while accounting for the unique characteristics of this key region. MedSeA will forecast chemical, climatic, ecological-biological, and socio-economical changes of the Mediterranean driven by increases in CO2 and other greenhouse gases, while focusing on the combined impacts of acidification and warming on marine shell and skeletal building, productivity, and food webs. We will use an interdisciplinary approach involving biologists, earth scientists, and economists, through observations, experiments, and modelling. These experts will provide science-based projections of Mediterranean acidification under the influence of climate change as well as associated economic impacts. Projections will be based on new observations of chemical conditions as well as new observational and experimental data on the responses of key organisms and ecosystems to acidification and warming, which will be fed into existing ocean models that have been improved to account for the Mediterranean´s fine-scale features. These scientific advances will allow us to provide the best advice to policymakers who must develop regional strategies for adaptation and mitigation.
Coastal areas concentrate vulnerability to climate change due to high levels of population, economic activity and ecological values. Because of that RISES-AM- addresses the economy-wide impacts of coastal systems to various types of high-end climatic scenarios (including marine and riverine variables). It encompasses analyses from global to local scales across the full range of RCPs and SSPs. It considers the still significant uncertainties in “drivers” (physical and socio-economic) and coastal system responses (e.g. land loss or uses, biological functions, economic productivity) within a hazard-vulnerability-risk approach. The emphasis is on the advantages of flexible management with novel types of coastal interventions (e.g. “green” options) within an adaptive pathway whose tipping points will be identified/quantified in the project. The assessment of impacts and adaptation deficits will be based on modelling tools that will provide a set of objective and homogeneous comparisons. The extended/improved suite of models will be applied across scales and focusing on the most vulnerable coastal archetypes such as deltas, estuaries, port cities and small islands. This will lead to a motivated analysis of the synergies and trade-offs between mitigation and adaptation, including what level and timing of climate mitigation is needed to avoid social, ecological and economic adaptation tipping points in coastal areas. We shall evaluate the direct and indirect costs of high-end scenarios (e.g. the increasing demand for safety under increasingly adverse conditions) for coasts with/without climate change and contribute to determining which policy responses are needed at the European and global levels in the context of international climate discussions. The project will finally transfer results to authorities, users and stakeholders from all economic sectors converging in coastal zones, including the climate research community dealing with more generalistic assessments.
The majority of critically ill children admitted to Paediatric Intensive Care Units (PICU) will require sedation and analgesia which is commonly achieved with a combination of an benzodiazepine and an opioid. However, these agents have a significant side-effect profile, including tolerance, withdrawal and respiratory/circulatory depression. Clonidine is commonly used for sedation in PICU and recommended by guidelines in various countries although there is a lack of evidence regarding it safety and efficacy in this setting. The need for safety and efficacy data as well as an age appropriate formulation for clonidine has been realised and clonidine is included in the EMA “Revised Priority List for Studies into Off-patent Medicinal Products”. Thus this proposal addresses an important paediatric therapeutic need. It is designed to fullfill the requirements for most ethical research in the paediatric population considering risk minimisation for patients, avoiding unnecessary studies and make use of already available data as outlined in the Paediatric Regulation (EC) No 1901/2006. The objectives of this project are a) to develop an age appropriate formulation of clonidine suitable for sedation of children in PICU b) to conduct a randomised, phase III, double-blind, active-controlled parallel group clinical trial of clonidine vs midazolam in patients from birth to 18 years to establish the efficacy and safety, including long-term outcomes and dose-dependent effects of clonidine and c) to establish an European consensus guideline for sedion of critically ill children. The ultimate goal is to use these data and to apply for a PUMA. On this basis a Paediatric Investigation Plan (PIP) has been approved by the EMA in February 2013 and is reflected in the work plan of CloSed. The project will increase the availability of paediatric medicines, foster the conduct of clinical trials in children and establish international paediatric research collaborations.
'IS-ENES will develop a Virtual Earth System Modelling Resource Centre (V.E.R.C.), integrating the European Earth system models (ESMs) and their hardware, software, and data environments. The overarching goal of this e-infrastructure is to further integrate the European climate modelling community, to help the definition of a common future strategy, to ease the development of full ESMs, to foster the execution and exploitation of high-end simulations, and to support the dissemination of model results and the interaction with the climate change impact community. The V.E.R.C. encompasses models, the tools to prepare, evaluate, run, store and exploit model simulations, the access to model results and to the European high-performance computing ecosystem – in particular the EU large infrastructures DEISA2 and PRACE. The V.E.R.C. developed by IS-ENES is based on generic ICT, Grid technology and subject-specific simulation codes and software environments. The European Network for Earth System Modelling (ENES) leads IS-ENES. This network gathers the European climate and Earth system modelling community working on understanding and prediction of future climate change. This community is strongly involved in the assessments of the Intergovernmental Panel on Climate Change and provides the predictions on which EU mitigation and adaptation policies are elaborated. IS-ENES combines expertise in Earth system modelling, in computational science, and in studies of climate change impacts. IS-ENES will provide a service on models and model results both to modelling groups and to the users of model results, especially the impact community. Joint research activities will improve the efficient use of high-performance computers, model evaluation tool sets, access to model results, and prototype climate services for the impact community. Networking activities will increase the cohesion of the European ESM community and advance a coherent European Network for Earth System modelling.'
GreenSeas shall advance the quantitative knowledge of how planktonic marine ecosystems, including phytoplankton, bacterioplankton and zooplankton, will respond to environmental and climate changes. To achieve this GreenSeas will employ a combination of observation data, numerical simulations and a cross-disciplinary synthesis to develop a high quality, harmonized and standardized plankton and plankton ecology long time-series, data inventory and information service. The focus will be on capturing the latitudinal gradients, biogeographical distributions and provinces in the planktonic ecosystem from the Arctic, through the Atlantic and into the Southern Ocean. It will build on historical data-sets, and ongoing multidisciplinary ocean planktonic ecosystem monitoring programs, enhanced where possible with an emphasis on the Southern Ocean. GreenSeas will also enhance international cooperative links with other plankton monitoring and analysis surveys around the globe. The heart of the GreenSeas concept is establishing a ‘core’ service following the open and free data access policy implemented in the Global Monitoring for Environment and Security (GMES) programme. Using state-of-the-art web-based data delivery systems the ‘core’ service will make available both new and historical plankton data and information products along with error-quantified numerical simulations to a range of users. Connecting with ‘downstream’ services GreenSeas will moreover offer ecosystem assessment and indicator reports tailored for decision makers, stakeholders and other user groups contributing in the policy making process. Finally, knowledge transfer will be guaranteed throughout the project lifetime, while the legacy of the GreenSeas database web-server will be maintained for at least 5 years beyond the project lifetime.
The social and economic impact of natural disasters in emerging economies and developing countries is growing. Many African countries have fragile economies unable to absorb the shocks caused by natural disasters enhanced by the increasing vulnerability of rapidly expanding urban areas. Climate change is likely to rapidly exacerbate this situation. The overall objective of CLUVA is to develop methods and knowledge to be applied to African cities to manage climate risks, to reduce vulnerabilities and to improve coping capacity and resilience towards climate changes. CLUVA will explore these issues in selected African cities (Addis Ababa, Dar es Salaam, Douala, Ougadougou, St.Louis). The project aims at improving the capacity of scientific institutions, local councils and civil society to cope with climate change. CLUVA will assess the environmental, social and economic impacts and the risks of climate change induced hazards expected to affect urban areas (floods, sea-level rise, storm surges, droughts, heat waves, desertification, storms and fires) at various time frames. The project will develop innovative climate change risk adaptation strategies based on strong interdisciplinary components. CLUVA will be conducted by a balanced partnership of European and African partners. The 7 European partners will bring together some of EU’s leading experts in climate, quantitative hazard and risk assessment, risk management, urban planners and social scientists. The 6 African partners from South Africa and from the Universities of the selected cities cover a similar range of expertises, making possible an effective integrated research effort. The project is structured in 6 WorkPackages dealing with climate change and impact models (WP1), multiple vulnerability (WP2), urban planning and governance as key issues to increase the resilience (WP3), capacity building and dissemination (WP4), coordination of the activities in the selected cities (WP5) and project management (WP6).
The objective of this project is to quantify the role of consumers’ behaviour on the design and assessment of policies aimed at enhancing energy efficiency and conservation and at promoting climate change mitigation. The project brings together different disciplines –namely energy policy, environmental and ecological economics, behavioral public finance, experimental economics, and technology policy- in an integrated fashion. COBHAM is designed to go beyond the standard analysis of energy and climate policies in the presence of environmental externalities, by accounting for the heterogeneity in consumers’ preferences, the role of social interactions, and the presence of behavioral tendencies and biases. The project seeks to: i) carry out innovative research in the theoretical understanding of the interplay between behavioral tendencies and environmental externalities; ii) generate new empirical data and research on individual preferences by means of original surveys and controlled experiments; iii) enhance integrated assessment models (IAMs) of economy, energy and climate with an advanced representation of consumers’ behavior. In doing so, the project will be able to provide a richer characterization of energy demand and of greenhouse gas emission scenarios, to better estimate consumers’ responsiveness to energy and climate policies, and to provide input to the design of new policy instruments aimed at influencing energy and environmental sustainable behavior. COBHAM is of high public policy relevance given Europe’s legislation on energy efficiency and CO2 emissions, and can provide important insights also outside the sphere of energy and climate policymaking.
The aim of the ECONADAPT project is to provide user-orientated methodologies and evidence relating to economic appraisal criteria to inform the choice of adaptation actions using analysis that incorporates cross-scale governance under conditions of uncertainty. A critical theme of the proposal is therefore to support the application of adaptation economics in the period following the publication of the EU’s 2013 Adaptation Strategy, focusing on key decision areas that need enhanced economic information, and on the key users of such information. Key decision areas include: management of extreme weather events modified by climate change that have high impact costs in the short term; appraisal of projects where the costs of climate risks are borne over long time periods; appraisal of flows of large-scale EU funds where the case for climate resilience needs to be made; macro-economic effects of climate change risks and adaptation strategies at Member State and EU levels, and; appraisal of overseas development assistance aimed at reducing the damage costs of climate risks in less developed countries. The project will work intensively with stakeholders from e.g. relevant DGs, Member States, Regional or local policy makers, and seek to learn from, and inform, experience. The methods and approaches will be co-developed with the diverse user groups engaged in using economic data within adaptation decision making. A two-tier approach is proposed to provide detailed guidance and empirical data: first, to other economists or private sector organisations with adaptation needs, and second, to other users who may want to use ‘light-touch’ methods, with the empirical data to help in scoping decision making outcomes. A strong link will be made with the European Climate Adaptation Platform (Climate-ADAPT), with the guidance and economic information designed for a wide range of users.
Today, countries use a wide variety of methods to monitor the carbon cycle and it is difficult to compare data from country to country and to get a clear global picture. The current global observational and modelling capabilities allow us to produce estimates of carbon budget at different level (from local to global) but many uncertainties still remain. Decision makers need now more than ever systematic, consistent and transparent data, information and tools for an independent and reliable verification process of greenhouse gas emissions and sinks. Therefore higher quality and quantity of CO2 and CH4 data, from different domains and with an enhanced spatial and temporal resolution, need to be collected by a globally integrated observation and analysis system. This can be obtained by the coordinated Global Carbon Observation and Analysis System that this project aims at designing, addressing the climate targets of the Group on Earth Observations (GEO) toward building a Global Earth Observation System of Systems (GEOSS) for carbon. Specific objectives of the GEOCARBON project are: • Provide an aggregated set of harmonized global carbon data information (integrating the land, ocean, atmosphere and human dimension) • Develop improved Carbon Cycle Data Assimilation Systems (CCDAS) • Define the specifications for an operational Global Carbon Observing System • Provide improved regional carbon budgets of Amazon and Central Africa • Provide comprehensive and synthetic information on the annual sources and sinks of CO2 for the globe and for large ocean and land regions • Improve the assessment of global CH4 sources and sinks and develop the CH4 observing system component • Provide an economic assessment of the value of an enhanced Global Carbon Observing System • Strengthen the effectiveness of the European (and global) Carbon Community participation in the GEO system
CLIPC will provide access to climate information of direct relevance to a wide variety of users, from scientists to policy makers and private sector decision makers. Information will include data from satellite and in-situ observations, climate models and re-analyses, transformed data products to enable impacts assessments and climate change impact indicators. The platform will complement existing Copernicus pre-operational components, but will focus on datasets which provide information on climate variability on decadal to centennial time scales from observed and projected climate change impacts in Europe, and will provide a toolbox to generate, compare and rank key indicators. Expanding climate data volumes will be supported with a distributed, scalable system, based on international standards. Guidance information on the quality and limitations of all data products will be provided. An on-going user consultation process will feed back into all the products developed within the project. The “one-stop-shop” platform will allow users to find answers to their questions related to climate and climate impacts data, and to ensure that the providence of science and policy relevant data products is thoroughly documented. Clarity of provenance will be supported by providing access to intermediate data products. Documentation will include information on the technical quality of data, on metrics related to scientific quality, and on uncertainties in and limitations of the data. A climate impacts toolkit will provide documentation on methods and data sources used to generate climate impact indicators. The toolkit will be made available for integration with Climate-ADAPT. The CLIPC consortium brings together the key institutions in Europe working on developing and making available datasets on climate observations and modelling, and on impact analysis.
EU CISE 2020 is an important step towards the accomplishment of the European roadmap for CISE; the project attains the widest possible experimental environment of innovative and collaborative processes between European maritime institutions. EU CISE 2020 takes as reference a broad spectrum of factors in the field of European Integrated Maritime Surveillance, arising from the European legal framework, as well as from studies, pilot and R&D projects accomplished in the last three years; in particular, the project is based on: • the CISE Roadmap developed by DG MARE • the results of European pilot projects BluemassMed and MARSUNO, • the work performed by CISE TAG-Technical Advisory Group, • the European studies on maritime surveillance already carried out, • the results of Security research projects in progress, with particular reference to PERSEUS and SEABILLA • the needs of innovation expressed by the maritime stakeholders arising from their operational experience in managing maritime surveillance processes and systems at European, international and national levels. Under the guidance of a Stakeholder Board, EU CISE 2020 will manage in parallel the elaboration of the action plan for the operational validation of new elements of R&D needed to develop CISE (concepts of architecture, concepts of operation, standards of data and services, new services, new processes, ...), the development of an open European test bed for incremental advancement of CISE in the medium-long term, the independent Verification & Validation of the new elements of R&D, as well as the assessment of organizational instruments necessary to sustain the appropriate governance structure and to stimulate public-private cooperation. EU CISE 2020 draws a major space of opportunity for national and European maritime Institutions to collaboratively innovate their processes and systems, and for European enterprises to develop a new range of solutions and services competitive in the international market.
XF-ACTORS aims to establish a multidisciplinary research program to answer the urgent need to improve prevention, early detection and control of Xylella fastidiosa (Xf). Recently, Xf was introduced into Italy, where it is causing severe damage to olive crops, and in France, where so far it is limited to ornamental plants and some landscape trees. The overall goal of the research program is to assess Xf potential to spread throughout EU territory, while maximizing its impact through a multifactor approach, based on a seamless integration amongst the 29 partners involved. Proposed actions will be complementary to those carried out under the Project POnTE - 635646, thus ensuring an unbroken continuity with currently ongoing efforts. Specific objectives have been outlined following a step-by-step route, from preventing its introduction into pest-free areas to the establishment of successful eradication strategies in infected zones. Preventive measures against Xf will be strengthened by implementing EU certification programs and developing a plan for establishing a EU Clean Plant Network. EU policy makers will be supported through the development of pest risk assessment tools, focused on current outbreaks and forecasting potentially threatened regions. Surveillance will be properly implemented, supporting the development of early detection tools for field use, remote sensing technology and predictive modelling. Critical information on the pathogen biology, epidemiological traits and hosts under threat, will be gathered with the guidance of the American research groups with long-established research. At the same time, the insect-bacteria interactions will be determined, for developing strategic control measures. The final overall objective is a comprehensive integrated management strategy for diseases associated with Xf, applicable both IPM and organic farming systems, to prevent Xf spread, control its economic, environmental/social impact, when an outbreak would occur.
ConnectinGEOs primary goal is to link existing coordinated Earth Observation networks with science and technology (S&T) communities, the industry sector and the GEOSS and Copernicus stakeholders. The aim is to facilitate a broader and more accessible knowledge base to support the needs of the GEO Societal Benefit Areas (SBAs) and their users. A broad range of subjects from climate, natural resources and raw materials, to the emerging UN Sustainable Development Goals (SDGs) will be addressed. A tangible outcome of the project will be a prioritized list of critical gaps within the European Union in observations and the models that translate observations into practice-relevant knowledge. The prioritized list will include the research activities required to address these gaps. Ultimately, this will increase coherency of European observation networks, increase the use of Earth observations for assessments and forecasts and inform the planning for future observation systems through a sustainable approach that will survive beyond the end of this project. ConnectinGEO has 4 major objectives: a) Enable a European Network of Earth Observation Networks (ENEON) including space-based, airborne and in-situ observations networks. b) Provide a methodology to convert the knowledge needs into a coherent observation and measurement compendium for ENEON strategy and development. c) Apply the ConnectinGEO methodology to identify and assess the priority of gaps. d) Open the results of the project and exploit them beyond the project end.
The main objective of the MyOcean Follow On project will be to operate a rigorous, robust and sustainable Ocean Monitoring and Forecasting component of the pre-operational Copernicus Marine Service delivering ocean physical state and ecosystem information to intermediate and downstream users in the areas of marine safety, marine resources, marine and coastal environment and weather, climate and seasonal forecasting. This is highly consistent with the objective of the HORIZON 2020 Work Programme 2014-2015 establishing the need for interim continuity of the pre-operational services developed by MyOcean 2 before the fully operational services of Copernicus. The project proposes to sustain the current pre-operational marine activities until March 2015 in order to avoid any interruption in the critical handover phase between pre-operational and fully operational services. In effect, any significant interruption in these services could potentially jeopardize several important high-level policy objectives and undermine other related scientific activities. In the period from October 2014 to March 2015, MyOcean-FO will ensure a controlled continuation and extension of the services already implemented in MyOcean and MyOcean2 FP7 projects that have advanced the pre-operational marine service capabilities. To enable the move to full operations, MyOcean-FO is targeting the prototype operations, and developing the management and coordination to continue the provision of Copernicus Marine service products and the link with independent R&D activities. MyOcean-FO will produce and deliver services based upon the common-denominator ocean state variables that are required to help meet the needs for information for environmental and civil security policy making, assessment and implementation. MyOcean-FO is also expected to have a significant impact on the emergence of a technically robust and sustainable Copernicus Service infrastructure in Europe.
The goal of PRIMAVERA is to deliver novel, advanced and well-evaluated high-resolution global climate models (GCMs), capable of simulating and predicting regional climate with unprecedented fidelity, out to 2050. This capability will deliver innovative climate science and a new generation of advanced Earth System Models. Sector-specific end-users in policy and business will be identified and engaged individually, with iterative feedback, to ensure that new climate information is tailored, actionable and strengthening societal risk management decisions. These goals will be achieved through the development of coupled GCMs from seven groups across Europe, with sufficient resolution to reproduce realistic weather and climate features (~25km mesh size), in addition to enhanced process parameterisation. Thorough assessment will use innovative process-based metrics and the latest observational and reanalysis datasets. Targeted experimental design will reduce inter-model spread and produce robust projections, forming the European contribution to the CMIP6 High-Resolution Model Intercomparison Project, led by PRIMAVERA. It is the first time that high-resolution coupled GCMs will be used under a single experimental protocol. Coordination, and the underlying process-understanding, will significantly increase the robustness of our findings. Our new capabilities will be used to improve understanding of the drivers of variability and change in European climate, including extremes, since such regional changes continue to be characterised by high uncertainty. We will also explore the frontiers of climate modelling and of high performance computing to produce simulations with a reduced reliance on physical parameterisations. These will explicitly resolve key processes such as ocean eddies, and will include new stochastic parameterisations to represent sub-grid scale processes. These frontiers simulations will further our understanding of the robustness of climate projections.
Significant challenges exist towards strengthening the Climate Change Adaptation (CCA) and Disaster Risk Reduction (DRR) communities for coherent, mutually reinforcing and pragmatic planning and action. PLACARD seeks to support the coordination of these two communities. PLACARD will tackle current challenges by 1) providing a common space where CCA and DRR communities can come together, share experiences and create opportunities for collaboration; 2) facilitating communication and knowledge exchange between both communities; and 3) supporting the coordination and coherence of CCA and DRR research, policy and practice. PLACARDs approach to achieving these goals is to establish a strong and operational network of networks by connecting to existing networks and boundary organisations, to foster dialogue among stakeholders (e.g. researchers, research funders, policymakers, practitioners) engaged in CCA and DRR at the international, European, national and sub-national scales. This overarching network will enable these communities to share knowledge, to discuss challenges and to jointly co-produce options to bridge the gaps they experience. It will support the development and implementation of a research and innovation agenda to make better use of research funding, as well as to develop guidelines to strengthen relevant institutions in their efforts to mainstream CCA and DRR. PLACARD will evolve iteratively, learning from the different processes and experiences with the stakeholders, and being flexible and responsive to changing needs. PLACARD will be supported by an online platform that builds upon and links existing CCA and DRR platforms to streamline the dissemination and communication of CCA and DRR activities. PLACARD Consortium is built around the leadership of a number of key European institutions experienced in CCA and DRR policy and practice, and UN organizations leading and engaged inpost-2015 agendas.
An important question for policy makers, in the G20 and beyond, is how to bring climate action into the broader sustainable development agenda. Objectives like energy poverty eradication, increased well-being and welfare, air quality improvement, energy security enhancement, and food and water availability will continue to remain important over the next several decades. There have been relatively few scientific analyses, however, that have explored the complex interplay between climate action and development while simultaneously taking both global and national perspectives. The CD-LINKS project will change this, filling this critical knowledge gap and providing much-needed information for designing complementary climate-development policies. CD-LINKS has four overarching goals: (i) to gain an improved understanding of the linkages between climate change policies (mitigation/adaptation) and multiple sustainable development objectives, (ii) to broaden the evidence base in the area of policy effectiveness by exploring past and current policy experiences, (iii) to develop the next generation of globally consistent, national low-carbon development pathways, and (iv) to establish a research network and capacity building platform in order to leverage knowledge-exchange among institutions from Europe and other key players within the G20. Through six highly integrated work packages from empirical research to model and scenario development CD-LINKS will advance the state-of-the-art of climate-development policy analysis and modelling in a number of areas. The project aims to have a pronounced impact on the policy dialogue, both nationally and internationally: an important outcome of the project will be a list of country-specific policy recommendations for effectively managing the long-term transformation process. These recommendations will point out opportunities for policy synergies and at the same time respect political and institutional barriers to implementation.
The overarching objective of AtlantOS is to achieve a transition from a loosely-coordinated set of existing ocean observing activities to a sustainable, efficient, and fit-for-purpose Integrated Atlantic Ocean Observing System (IAOOS), by defining requirements and systems design, improving the readiness of observing networks and data systems, and engaging stakeholders around the Atlantic; and leaving a legacy and strengthened contribution to the Global Ocean Observing System (GOOS) and the Global Earth Observation System of Systems (GEOSS). AtlantOS will fill existing in-situ observing system gaps and will ensure that data are readily accessible and useable. AtlantOS will demonstrate the utility of integrating in-situ and Earth observing satellite based observations towards informing a wide range of sectors using the Copernicus Marine Monitoring Services and the European Marine Observation and Data Network and connect them with similar activities around the Atlantic. AtlantOS will support activities to share, integrate and standardize in-situ observations, reduce the cost by network optimization and deployment of new technologies, and increase the competitiveness of European industries, and particularly of the small and medium enterprises of the marine sector. AtlantOS will promote innovation, documentation and exploitation of innovative observing systems. All AtlantOS work packages will strengthen the trans-Atlantic collaboration, through close interaction with partner institutions from Canada, United States, and the South Atlantic region. AtlantOS will develop a results-oriented dialogue with key stakeholders communities to enable a meaningful exchange between the products and services that IAOOS can deliver and the demands and needs of the stakeholder communities. Finally, AtlantOS will establish a structured dialogue with funding bodies, including the European Commission, USA, Canada and other countries to ensure sustainability and adequate growth of IAOOS.
The BlueHealth Consortium brings together a multi-disciplinary team of experts reaching across all 28 European Union countries. The proposed 4.5 year BlueHealth Project takes an international, interdisciplinary and multi-sector approach to health promotion and disease prevention by investigating the relationship between the EUs blue infrastructure and the health and well-being of its citizens. Blue infrastructure refers to the network of natural and man-made aquatic environments providing a range of multi-sectorial services (e.g. transportation, fresh water provision). There has been no systematic attempt to detail the potential impacts of our blue infrastructure on health promotion and disease prevention, nor to develop guidelines on how health should be considered when developing blue infrastructure interventions, particularly across sectors. BlueHealth will address this gap. The majority of Europeans live in cities built on inland waterways, lakes, or the coasts. BlueHealth will focus on urban blue infrastructures. The EUs blue infrastructure offers significant health and well-being related opportunities and benefits (eg urban cooling, recreation), but also challenges and stressors (eg flooding, microbial/chemical pollution). BlueHealth will investigate these trade-offs, with the aims of quantifying the impacts on population health and well-being of interventions and policy initiatives connected to blue infrastructure, and identifying success factors and obstacles of inter-sectorial collaborations. Assessments of health and environment benefits, risks and costs will improve our understanding of the role of urban blue infrastructures on across-sector health promotion and disease prevention. The Partners have collaborations across the Environment, Health, and Climate sectors, and extensive experience with inter-institutional, multi-sectorial, interdisciplinary research programmes employing innovation, stakeholder engagement, dissemination, and policy impact.
CRESCENDO brings together seven Earth System Modelling (ESM) groups with three Integrated Assessment Modelling teams, as well as experts in ESM evaluation, ESM projection and feedback analysis, climate impacts and science communication to address the following goals; (i) improve the process-realism and simulation-quality of European ESMs in order to increase the reliability of future Earth system projections; (ii) develop and apply a community ESM evaluation tool allowing routine ESM performance benchmarking, process-based ESM evaluation and the analysis of Earth system projections. The resulting tool will be installed and made openly-available on the Earth System Grid Federation (ESGF); (iii) further develop the discipline of emergent constraints in order to better constrain the representation of key biogeochemical and aerosol feedbacks in ESMs and thereby reduce overall uncertainty in Earth system projections; (iv) quantify the effective radiative forcing of key biogeochemical and aerosol feedbacks in ESM projections; (v) contribute to the development of a new set of combined socio-economic and climate emission scenarios that more explicitly link future socio-economic development pathways with global radiative forcing; (vi) apply the project ESMs to these new scenario data to generate an ensemble of Earth system projections for the coming century and, in combination with the underlying socio-economic scenarios, use these projections to assess joint risks and co-benefits related to climate change, climate impacts, adaptation and mitigation; (vii) ensure data produced by CRESCENDO is available to the international community through timely archival on the ESGF and work closely with climate impact assessment and regional downscaling teams to ensure maximum uptake and use of these data in such complementary areas of science; (viii) actively disseminate knowledge generated in CRESCENDO to fellow scientists, policymakers and the general public.
The Climateurope Action will coordinate and support Europes knowledge base to enable better management of climate-related risks and opportunities thereby creating greater social and economic value. Climateurope has four main objectives: 1. Develop a European framework for Earth-system modelling and climate service activities. The framework will be built around a managed network of European, national and international activities and organisations. Such a network does not yet exist but is becoming increasingly necessary. 2. Coordinate and integrate European climate modelling, climate observations and climate service infrastructure initiatives (including JPI-Climate, Climate-KIC, Copernicus C3S) and facilitate dialogue among the relevant stakeholders, including climate science communities, funding bodies, providers and users. This will improve synergies, reduce fragmentation and promote alignment between activities. The user communities will include public sector, businesses, industry and society. 3. Establish multi-disciplinary expert groups to assess the state-of-the-art in Earth-system modelling and climate services in Europe; and identify existing gaps, new challenges and emerging needs. 4. Enhance communication and dissemination activities with stakeholders, in particular through events to bring the network together and showcase progress; stakeholder-oriented reports on the state-of-the-art in Earth-system modelling and climate services in Europe; operating a website; and undertaking additional stakeholder interactions to increase awareness and maximise project impacts. This CSA will deliver a range of highly beneficial impacts. Two key impacts are (i) to greatly enhance the transfer of information between suppliers and users to improve the resilience of European society to climate change and mitigation of the risk of dangerous climate change; and (ii) to improve coordination to increase efficiency, reduce fragmentation and create synergies with international R&I programmes.
The coastal area is the most productive and dynamic environment of the world ocean with significant resources and services for mankind. JERICO-NEXT (33 organizations from 15 countries) emphasizes that the complexity of the coastal ocean cannot be well understood if interconnection between physics, biogeochemistry and biology is not guaranteed. Such an integration requires new technological developments allowing continuous monitoring of a larger set of parameters. In the continuity of JERICO(FP7), the objective of JERICO-NEXT consists in strengthening and enlarging a solid and transparent European network in providing operational services for the timely, continuous and sustainable delivery of high quality environmental data and information products related to marine environment in European coastal seas Other objectives are: Support European coastal research communities, enable free and open access to data, enhance the readiness of new observing platform networks by increasing the performance of sensors, showcase of the adequacy of the so-developed observing technologies and strategies, propose a medium-term roadmap for coastal observatories through a permanent dialogue with stakeholders. Innovation JERICO-NEXT is based of a set of technological and methodological innovations. One main innovation potential is to provide a simple access to a large set of validated crucial information to understand the global change in coastal areas. Although JERICO-NEXT already includes industrial partners, it will be open to other research institutes, laboratories and private companies which could become associated partners to the project. Added values of JERICO NEXT JERICO-RI shall send data and information in an operational mode to European data systems, with dedicated service access. One of the strengths of JERICO-NEXT lies in the fact that technological and methodological developments shall be deployed in natural environment.
EUrope-BRAzil Collaboration on BIG Data Scientific REsearch through Cloud-Centric Applications aims at providing services in the cloud for the processing of massive data coming from highly connected societies, which impose multiple challenges on resource provision, performance, Quality of Service and privacy. Processing those data require rapidly provisioned infrastructures customised to Big Data requirements. The three main aims of the proposal will be: - The development of innovative Big Data services for capturing, federating and annotating on the order of PB of data on top of efficient programming models. Despite that MapReduce is a successful model in BigData (with a high impact on massive Geo-spatial and textual data), it has many limitations specially when dealing with real-time transactions or streamed data, the proposal would aim to introduce innovative evolutions on the capture, federation & annotation experience it can bring to the table with its partners. - The Development of advanced cloud services to support Big Data. This cloud services will address three main challenges: a) the advance on SLAs to support privacy (boundaries of protected data to be moved) and performance restrictions (convenience of moving data to computing resources or vice-versa); b) Quality of Service (vertical and horizontal elastic adjustment of resources allocates to meet deadlines and dynamic adjustment of workloads); and c) Business models (price-based dynamic re-scheduling of data searching for the best usage of resources invested). - The demonstration of such services on applications with high social and business impact, addressing main scenarios of high interest for both Europe and Brazil.
ICARUS will develop innovative tools for urban impact assessment in support of air quality and climate change governance in the EU. This will lead to designing and implementing win-win strategies to improve the air quality and reduce the carbon footprint in European cities. An integrated approach will be used for air pollution monitoring and assessment combining ground-based measurements, atmospheric transport and chemical transformation modelling and air pollution indicators derived from satellite, airborne and personal remote sensing. The ICARUS methodology and toolkit will be applied in nine EU cities of variable size, socio-economic condition and history. Technological and non-technological measures and policy options will be analyzed and proposed to the responsible authorities for air pollution and/or climate change at the city level. Based on the advanced monitoring and assessment tools outlined above, a cloud-based solution will be developed to inform citizens of environment-conscious alternatives that may have a positive impact on air quality and carbon footprint and finally on their health and motivate them to adopt alternative behaviours. Agent-based modelling will be used to capture the interactions of population subgroups, industries and service providers in response to the policies considered in the project. Thus, social and cultural factors, socio-economic status (SES) and societal dynamics will be explicitly taken into account to assess overall policy impact. Our findings will be translated into a web-based guidebook for sustainable air pollution and climate change governance in all EU cities. ICARUS will develop a vision of a future green city: a visionary model that will seek to minimize environmental and health impacts. Transition pathways will be drawn that will demonstrate how current cities could be transformed towards cities with close to zero or negative carbon footprint and maximal wellbeing within the next 50 years.
ESiWACE will substantially improve efficiency and productivity of numerical weather and climate simulation on high-performance computing platforms by supporting the end-to-end workflow of global Earth system modelling in HPC environment. This will be obtained by improving and supporting (1) scalability of models, tools and data management on state-of-the-art supercomputer systems (2) Usability of models and tools throughout the European HPC eco-system, and (3) the Exploitability of the huge amount of resulting data. We will develop solutions for cross-cutting HPC challenges particular to the weather and climate domain. This will range from the development of specific software products to the deployment of user facing services for both, computing and storage. ESiWACE leverages two established European networks, namely (1) the European Network for Earth System modelling, representing the European climate modelling community and (2) the world leading European Centre for Medium-Range Weather Forecasts. The governance structure that defines the services to be provided will be driven by the European weather and climate science community. Weather and climate computing have always been one of the key drivers for HPC development, with domain specific scientific and technical requirements that stretch the capability and capacity of existing software and hardware to the limits. By developing solutions for Europe and at European scale, ESiWACE will directly impact on the competitiveness of the European HPC industry by engendering new products, providing opportunities for exploitation beyond the project itself, and by enhancing the skills base of staff in both industry and academia. ESiWACE will be at once thematic, as it focuses on the HPC application domain of climate and weather modeling, transversal, as it covers several aspects of computational science, and challenge-driven, as climate and weather predictability represents a major societal issue.
The INDIGO-DataCloud project (INDIGO for short) aims at developing a data/computing platform targeted at scientific communities, deployable on multiple hardware, and provisioned over hybrid (private or public) e-infrastructures. This platform will be built by leading European developers, resource providers, e-infrastructures and scientific communities in order to ensure its successful exploitation and sustainability. All members of the consortium share the common interest in developing advanced middleware to sustain the deployment of service models and user tools to tackle the challenges of the Big Data era. INDIGO will exploit the formidable know-how that was built in Europe along the past ten years of collaborations on scientific computing based on different consolidated and emerging paradigms (HPC, Grid and Cloud). Regarding Cloud computing, both the public and private sectors are already offering IaaS-type Cloud resources. However, numerous areas are of interest to scientific communities where Cloud computing uptake is currently lacking, especially at the PaaS and SaaS levels. The project therefore aims at developing tools and platforms based on open source solutions addressing scientific challenges in the Cloud computing, storage and network areas. INDIGO will allow application development and execution on Cloud and Grid based infrastructures, as well as on HPC clusters. The project will extend existing PaaS solutions, allowing public and private e-infrastructures, including those provided by EGI, EUDAT, PRACE and HelixNebula, to integrate their existing services, make them available through GEANT-compliant federated and distributed AA policies, guaranteeing transparency and trust in the provisioning of such services. INDIGO will also address the development of a flexible and modular presentation layer connected to the expanded PaaS and SaaS frameworks developed by the project and allowing innovative user experiences, also from mobile appliances.
Unlike extreme disasters, smaller scale disaster events receive relatively little attention in Climate Change and Disaster studies even though they occur more frequently and cause considerable damage and disruption to local economic, social, and environmental systems. This project looks at the impact and response generated by extensive disaster events in three regions in Italy as a means of furthering understanding of vulnerability and risk to recurring natural hazards. The project holds significant policy relevance in the fields of development, disaster risk reduction, and climate change adaptation. Despite their cumulative impact, small disasters are frequently left out of national disaster databases, and do not form the focus of national climate change or disaster management policies. As demonstrated by Marulanda et al (2010), the accumulated economic, social and environmental cost of small scale disasters can be higher in comparison to high impact, low frequency events occurring over the same time period. Small disasters are also important because they reveal underlying local development and planning issues that form the root cause of vulnerability to more extreme events. The objectives of this project include 1) a conceptual assessment of mechanisms for capturing data on disaster losses to analyze how definitions impact data accuracy for measuring extensive risk; 2) using alternative sources to build on existing datasets in order to assess the economic, social, and environmental losses associated with extensive disasters for three regions in Italy; 3) examining how disaster management institutions and communities respond to small scale and recurrent disasters, and if such events trigger changes in risk perception, disaster management, and learning at both institutional and community levels; 4) comparisons between quantitative and qualitative impacts of disaster events, and institutional regimes, hazard contexts, and cultural norms for confronting risk.
Within the European Research Area (ERA), the ERA4CS Consortium is aiming to boost, research for Climate Services (CS), including climate adaptation, mitigation and disaster risk management, allowing regions, cities and key economic sectors to develop opportunities and strengthen Europes leadership. CS are seen by this consortium as driven by user demands to provide knowledge to face impacts of climate variability and change, as well as guidance both to researchers and decision?makers in policy and business. ERA4CS will focus on the development of a climate information translation layer bridging user communities and climate system sciences. It implies the development of tools, methods, standards and quality control for reliable, qualified and tailored information required by the various field actors for smart decisions. ERA4CS will boost the JPI Climate initiative by mobilizing more countries, within EU Member States and Associated Countries, by involving both the research performing organizations (RPOs) and the research funding organizations (RFOs), the distinct national climate services and the various disciplines of academia, including Social Sciences and Humanities. ERA4CS will launch a joint transnational co-funded call, with over 16 countries and up to 75M, with two complementary topics: (i) a cash topic, supported by 12 RFOs, on co-development for user needs and action-oriented projects; (ii) an in-kind topic, supported by 28 RPOs, on institutional integration of the research components of national CS. Finally, ERA4CS additional activities will initiate a strong partnership between JPI Climate and others key European and international initiatives (as Copernicus, KIC-Climate, JPIs, WMO/GFCS, Future Earth, Belmont Forum ) in order to work towards a common vision and a multiyear implementation strategy, including better co-alignment of national programs and activities up to 2020 and beyond.
The project analyses the market structures and drivers, obstacles and opportunities from scientific, technical, legal, ethical, governance and socioeconomic vantage points. The analysis is grounded in economic and political science theories on how service markets with public and private features can develop, and how innovations may succeed. The consortium offers a good cross-section of representation from various vantage points in the climate services market, complemented by expert knowledge on market research and innovation policy. The consortium has excellent connections to many climate service user types and other stakeholders. The study will engage a large diversity of stakeholders in many ways, especially through the explorative market development exercises employing different co-design approaches. Next to reporting based analysis of market functioning and solutions, the protocols developed in the explorative market development exercises are meant for replication at large scale.
The COP21 outcome represents an important new strategic context for EU climate policy. Analysing the implications of this new context requires an interdisciplinary approach, combining analysis of the evolution of the international climate regime as well as of NDCs and their socio-economic implications. Such analysis is also urgent, given the timelines imposed by the Paris Agreement for a facilitative dialogue in 2018 with a view to creating the conditions for the revision of NDC in 2020. In order to address the context described above, this project has four objectives : 1) Assess the adequacy of the NDCs submitted at COP21 in light of the global temperature target of limiting warming to 2°C/1.5°C. Through the analysis of GHG scenarios and energy system scenarios , the project will pay particular attention to the concrete system changes induced by NDCs, and compare them with the changes required to meet the global temperature limit. The project will also analyse scenarios limiting warming to 1.5°C, and the impact of NDCs on other sectors, in particular land-use. 2) Assess the implications of NDCs and deeper mitigation pathways on other European socio-economic objectives. By integrating GHG and energy system scenarios into a range of different macro-economic, global energy system models and other quantified methodologies, the project will investigate implications for European socio-economic objectives related to innovation and technology deployment; trade and competiveness; investment, financial flows and economic growth (green growth); and global energy markets and energy security. 3. Assess the adequacy of the outcomes of COP21, and the implications and opportunities emerging from ongoing UNFCCC negotiations. The project will undertake a social sciences-based (in particular international law and international relations) assessment of the outcome of COP21. 4) Policy recommendations for EU climate policy and climate diplomacy.
The Paris Agreement substantially increased the need for countries and regions to understand the full economic, social and environmental implications of the deep decarbonisation to which the global community is now committed. The EU has long had decarbonisation ambitions, but there remains considerable uncertainty as to precisely how these ambitions will be achieved, or what the impacts of such achievement will be on the EU economy and society more generally. INNOPATHS will resolve this uncertainty to the extent possible, will characterise and provide a quantification of the uncertainty which remains, and will describe in great detail a number of possible low-carbon pathways for the EU, together with the economic, social and environmental impacts to which they are likely to lead. These pathways will be co-designed with the aid of 23 stakeholders from different sectors who have already provided letters of support to INNOPATHS. INNOPATHS will suggest through this analysis how the benefits of these pathways, such as new industries, jobs and competitiveness, may be maximized, and how any negative impacts, such as those on low-income households, or on carbon-intensive sectors, may be mitigated. INNOPATHS will communicate its insights through the normal scientific channels, and make substantial contributions to the scientific literature, but will go well beyond this in terms of interactions with stakeholders, building on the co-design processes in the project to reach out to stakeholder networks of businesses, NGOs, local and national policy makers. INNOPATHS will create four innovative online tools to explain its pathways, technological transitions and policies, to different constituencies. Through these tools and other dissemination and communication mechanisms, INNOPATHS will have a substantial impact on the climate and energy policy debates up to and beyond 2020, increasing the probability that decisions in this area will be taken in an informed and cost-effective way
African societies face growing global change risks, with rapidly changing patterns of human settlements and intensity of use of ecosystem services. At the same time, climate variability and climate change trends are intensifying stress on the ecosystems that ensure environmental security, both locally (e.g. ecosystem services), regionally (e.g. sustainable development options) and internationally (e.g. carbon sequestration). Approaches that can address this challenge in an integrated and multidisciplinary way are urgently needed in many places in Africa where there is a close relationship between societal well-being and environmental condition, relating particularly to biomass for energy and food production, and hydrological considerations such as water yields. Policymakers and land-use decision makers are increasingly dependent on knowledge on the state of the environment. Long-term observational systems and research infrastructures have been identified to be indispensable elements of knowledge generation to serve climate change adaptation, food security, and climate change mitigation. This proposal supports EU-African cooperation on research infrastructures. Its aims are to increase coherence and interoperability between infrastructures in Europe and Africa, to enhance technical competence, science awareness and life-long learning in Africa in order to facilitate the use of research results for evidence-based policy making, and to identify knowledge gaps for future research directions. The project will 1) identify the essential parameters needed to develop science based strategies to improve food and nutrition security including early warning systems and to mitigate climate change, 2) formulate a roadmap towards fully interoperable and accessible research infrastructures in agricultural and climate research in the EU and Africa that match the needs of the users, and 3) deliver a contribution to capacity building and human capital development in Africa.
Blue-Action will provide fundamental and empirically-grounded, executable science that quantifies and explains the role of a changing Arctic in increasing predictive capability of weather and climate of the Northern Hemisphere.To achieve this Blue-Action will take a transdisciplinary approach, bridging scientific understanding within Arctic climate, weather and risk management research, with key stakeholder knowledge of the impacts of climatic weather extremes and hazardous events; leading to the co-design of better services.This bridge will build on innovative statistical and dynamical approaches to predict weather and climate extremes. In dialogue with users, Blue-Arctic will take stock in existing knowledge about cross-sectoral impacts and vulnerabilities with respect to the occurrence of these events when associated to weather and climate predictions. Modeling and prediction capabilities will be enhanced by targeting firstly, lower latitude oceanic and atmospheric drivers of regional Arctic changes and secondly, Arctic impacts on Northern Hemisphere climate and weather extremes. Coordinated multi-model experiments will be key to test new higher resolution model configurations, innovative methods to reduce forecast error, and advanced methods to improve uptake of new Earth observations assets are planned. Blue-Action thereby demonstrates how such an uptake may assist in creating better optimized observation system for various modelling applications. The improved robust and reliable forecasting can help meteorological and climate services to better deliver tailored predictions and advice, including sub-seasonal to seasonal time scales, will take Arctic climate prediction beyond seasons and to teleconnections over the Northern Hemisphere. Blue-Action will through its concerted efforts therefore contribute to the improvement of climate models to represent Arctic warming realistically and address its impact on regional and global atmospheric and oceanic circulation.
ANTIDOTE vuole realizzare un sistema per la diagnosi e il monitoraggio della Xylella fastidiosa (Xf), basato su competenze interdisciplinari, che consenta di identificare lo stato della pianta e le condizioni geografiche che, isolatamente o combinate, possono caratterizzare, scatenare, favorire o accelerare le infezioni dovute alla Xf e i successivi sintomi di disseccamento. ANTIDOTE introdurrà infatti un metodo alternativo di monitoraggio del patogeno direttamente in campo basato sulla misurazione ad alta frequenza di alcuni parametri del flusso xilematico da parte di sensori multi-parametrici. Tali dispositivi si interfacceranno con soluzioni IT per l’analisi dei dati, e con le attività di allerta e/o prevenzione dell’attacco e diffusione della Xf basati su modelli fenologici statistico-matematici. Il sistema integrato di monitoraggio e previsione, alla base dei più avanzati sistemi di supporto alle decisioni, si configura come una forte innovazione tecnologica e procedurale per la tematica in esame e rappresenta un’evoluzione rispetto allo stato dell’arte sia nelle tecnologie che nelle prassi operative utilizzate per l’identificazione e il controllo del patogeno. Combinando il livello di pericolo (severità di invasione di Xf), l’esposizione (es. la presenza di piante infette adiacenti) e la vulnerabilità (predisposizione della pianta all’infezione in base allo stato di salute e/o periodo di sviluppo), il sistema aggregherà informazioni utili alla definizione di tecniche preventive e/o curative adeguate.
Condividi questo sito sui social