Effettua una ricerca
Angela Corcelli
Ruolo
Professore Associato
Organizzazione
Università degli Studi di Bari Aldo Moro
Dipartimento
DIPARTIMENTO DI SCIENZE MEDICHE DI BASE, NEUROSCIENZE ED ORGANI DI SENSO
Area Scientifica
AREA 05 - Scienze biologiche
Settore Scientifico Disciplinare
BIO/09 - Fisiologia
Settore ERC 1° livello
Non Disponibile
Settore ERC 2° livello
Non Disponibile
Settore ERC 3° livello
Non Disponibile
The PC/LPC ratio of blood serum is increasingly considered to represent an important clinical parameter that reflects various kinds of diseases. Here, a simple and fast method of lipid analyses of “intact” blood serum (i.e. without extraction) by MALDI-TOF mass spectrometry is described. The novel procedure allows the accurate determination of the PC/LPC ratio, utilizing only a tiny amount of blood. The serum is diluted with distilled water and directly applied onto the MALDI target and, after drying, covered by a thin layer of the matrix solution (either 9-aminoacridine or 2,5-dihydroxybenzoic acid). Positive ion mass spectra acquired by using this procedure give similar peak patterns as the spectra of the lipid extracts of horse blood serum. Blood serum from fourteen different horses was used to set up and validate the new method of lipid analysis. The PC/LPC ratios determined with the fast “intact” method were compared with those obtained with classical MALDI-TOF MS and 31P NMR analyses of the corresponding lipid extracts. As comparable data were obtained, this is a clear indication that extraction is not an absolute necessity.
The lipid composition of Halobacillus halophilus was investigated by combined thin-layer chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analyses of the total lipid extract. Main polar lipids were found to be sulfoquinovosyldiacylglycerol and phosphatidylglycerol, while cardiolipin was a minor lipid together with phosphatidic acid, alanyl-phosphatidylglycerol and two not yet fully identified lipid components. In addition the analyses of residual lipids, associated with denatured proteins after the lipid extraction, revealed the presence of significant amounts of cardiolipin, indicating that it is a not readily extractable phospholipid. Post decay source mass spectrometry analyses yielded the determination of acyl chains of main lipid components. On increasing the culture medium salinity, an increase in the shorter chains and the presence of chain unsaturations were observed. These changes in the lipid core structures might compensate for the increase in packing and rigidity of phospholipid and sulfoglycolipid polar heads in high salt medium, therefore contributing to the homeostasis of membrane fluidity and permeability in salt stress conditions
A study on the effect of anandamide (AEA) in energy coupling of rat liver mitochondria is presented. Micromolar concentrations of AEA, while almost ineffective on substrate supported oxygen consumption rate and on uncoupler stimulated respiration, strongly inhibited the respiratory state III. AEA did not change the rate and the extent of substrate generated membrane potential, but markedly delayed rebuilding by respiration of the potential collapsed by ADP addition. Overall, these data suggest that anandamide inhibits the oxidative phosphorylation process. Direct measurement of the F"oF"1 ATP synthase activity showed that the oligomycin sensitive ATP synthesis was inhibited by AEA, (IC"5"0, 2.5@mM), while the ATP hydrolase activity was unaffected. Consistently, AEA did not change the membrane potential generated by ATP hydrolysis.
The GL15 glioblastoma cell line undergoes viability loss upon treatment with bromopyruvate. The biochemical mechanisms triggered by the antiglycolytic agent indicate the activation of an autophagic pathway. Acridine orange stains acidic intracellular vesicles already 60 min after bromopyruvate treatment, whereas autophagosomes engulfing electron dense material are well evidenced 18 h later. The autophagic process is accompanied by the expression of the early autophagosomal marker Atg5 and by LC3-II formation, a late biochemical marker associated with autophagosomes. In agreement with the autophagic route activation, the inhibitory and the activator Akt and ERK signaling pathways are depressed and enhanced, respectively. In spite of the energetic collapse suffered by bromopyruvate-treated cells, MALDI-TOF mass spectrometry lipid analysis does not evidence a decrease of the major phospholipids, in accordance with the need of phospholipids for autophagosomal membranes biogenesis. Contrarily, mitochondrial cardiolipin decreases, accompanied by monolyso-cardiolipin formation and complete cytochrome c degradation, events that could target mitochondria to autophagy. However, in our experimental conditions cytochrome c degradation seems to be independent of the autophagic process.
The lipidome of the marine hyperthermophilic archaeon Pyrococcus furiosus was studied by means of combined thin-layer chromatography and MALDI-TOF/MS analyses of the total lipid extract. 80–90% of the major polar lipids were represented by archaeol lipids (diethers) and the remaining part by caldarchaeol lipids (tetraethers). The direct analysis of lipids on chromatography plate showed the presence of the diphytanylglycerol analogues of phosphatidylinositol and phosphatidylglycerol, the N-acetylglucosamine-diphytanylglycerol phosphate plus some caldarchaeol lipids different from those previously described. In addition, evidence for the presence of the dimeric ether lipid cardiolipin is reported, suggesting that cardiolipins are ubiquitous in archaea.
The glycerophospholipid cardiolipin is a unique constituent of bacterial and mitochondrial membranes. It is involved in forming and stabilizing high molecular mass membrane protein complexes and in maintaining membrane architecture. Absence of cardiolipin leads to reduced efficiency of the electron transport chain, decreased membrane potential, and, ultimately, impaired respiratory metabolism. For the protozoan parasite Trypanosoma brucei cardiolipin synthesis is essential for survival, indicating that the enzymes involved in cardiolipin production represent potential drug targets. T. brucei cardiolipin synthase (TbCLS) is unique as it belongs to the family of phospholipases D (PLD), harboring a prokaryotic-type cardiolipin synthase (CLS) active site domain. In contrast, most other eukaryotic CLS, including the yeast ortholog ScCrd1, are members of the CDP-alcohol phosphatidyl transferase family. To study if these mechanistically distinct CLS enzymes are able to catalyze cardiolipin production in a cell that normally expresses a different type of CLS, we expressed TbCLS and ScCrd1 in CLS-deficient yeast and trypanosome strains, respectively. Our results show that TbCLS complemented cardiolipin production in CRD1 knockout yeast and partly restored wild-type colony forming capability under stress conditions. Remarkably, CL remodeling appeared to be impaired in the transgenic construct, suggesting that CL production and remodeling are tightly coupled processes that may require a clustering of the involved proteins into specific CL-synthesizing domains. In contrast, no complementation was observed by heterologous expression of ScCrd1 in conditional TbCLS knockout trypanosomes, despite proper mitochondrial targeting of the protein.
Polar membrane lipids of an archaeal microorganism recently isolated from the natural salt lake Fuente de Piedra (Málaga, Spain) have been studied by means of TLC in combination with MALDI-TOF mass spectrometry. The major phospholipids are the ether lipids phosphatidylglycerophosphate methyl ester and phosphatidylglycerosulfate, while phosphatidylglycerol is barely detectable; in addition the bisphosphatidylglycerol (archaeal cardiolipin) has been detected for the first time in a representative of the genus Halobellus. The structures of glycolipids, including a glycosyl-cardiolipin, have been elucidated by post source decay (PSD) mass spectrometry analysis. Besides the monosulfated diglycosyl diphytanylglyceroldiether, two variants of a bis-sulfated diglycosyl diphytanylglyceroldiether have been identified; furthermore the glycosyl-cardiolipin is found to have the same structure of the analogue present in Halorubrum trapanicum and Haloferax volcanii. The role of the abundant sulfated glycolipids in facing high extracellular salinity is discussed.
Mechanical properties of nano-sized vesicles made up of natural membranes are crucial to the development of stable, biocompatible nanocontainers with enhanced functional, recognition and sensing capabilities. Here we measure and compare the mechanical properties of plasma and inner membrane nanovesicles ∼80 nm in diameter obtained from disrupted yeast Saccharomyces cerevisiae cells. We provide evidence of a highly deformable behaviour for these vesicles, able to support repeated wall-to-wall compressions without irreversible deformations, accompanied by a noticeably high Young's modulus (∼300 MPa) compared to that obtained for reconstituted artificial liposomes of similar size and approaching that of some virus particles. Surprisingly enough, the results are approximately similar for plasma and inner membrane nanovesicles, in spite of their different lipid compositions, especially on what concerns the ergosterol content. These results point towards an important structural role of membrane proteins in the mechanical response of natural membrane vesicles and open the perspective to their potential use as robust nanocontainers for bioapplications. © 2014 The Royal Society of Chemistry.
An extremely haloalkaphilic archaeon, strain T26T, belonging to the genus Halostagnicola , was isolated from sediment of the soda lake Bange in the region of Tibet, China. Phylogenetic analysis based on 16S rRNA gene sequence similarities showed that strain T26T was closely related to Halostagnicola alkaliphila 167-74T (98.4 %), Halostagnicola larsenii XH-48T (97.5 %) and Halostagnicola kamekurae 194-10T (96.8 %). Strain T26T grew optimally in media containing 25 % (w/v) salts, at pH 9.0 and 37 °C in aerobic conditions. Mg2+ was not required for growth. The cells were motile, pleomorphic and Gram-stain-variable. Colonies of this strain were pink pigmented. Hypotonic treatment caused cell lysis. The polar lipids of the isolate consisted of C20C20 and C20C25 derivatives of phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and minor phospholipids components. Glycolipids were not detected, in contrast to the two neutrophilic species of this genus. The genomic DNA G+C content of strain T26T was 60.1 mol% and DNA–DNA hybridization showed a relatedness of 19 and 17 % with Halostagnicola alkaliphila CECT 7631T and Halostagnicola larsenii CECT 7116T, respectively. The comparison of 16S rRNA gene sequences, detailed phenotypic characterization, polar lipid profile and DNA–DNA hybridization studies revealed that strain T26T belongs to the genus Halostagnicola , and represents a novel species for which the name Halostagnicola bangensis sp. nov. is proposed. The type strain is T26T ( = CECT 8219T = IBRC-M 10759T = JCM 18750T).
SWNTs have been functionalized with an archaeal glycolipid which wraps around the nano-objects in a single layer or bilayer, as a function of the nanotube diameter. Hydrogen bonds between the lipid glucose rings and the aromatic SWNT walls are involved in the formation of hybrid complexes resulting in electron transfer from the glycolipid to the nanotubes
Acidic glycerophospholipids play an important role in determining the resistance of Gram-negative bacteria to stress conditions and antibiotics. Acinetobacter baumannii, an opportunistic human pathogen which is responsible for an increasing number of nosocomial infections, exhibits broad antibiotic resistances. Here lipids of A. baumannii have been analyzed by combined MALDI-TOF/MS and TLC analyses; in addition GC-MS analyses of fatty acid methyl esters released by methanolysis of membrane phospholipids have been performed. The main glycerophospholipids are phosphatidylethanolamine, phosphatidylglycerol, acyl-phosphatidylglycerol and cardiolipin together with monolysocardiolipin, a lysophospholipid only rarely detected in bacterial membranes. The major acyl chains in the phospholipids are C16:0 and C18:1, plus minor amounts of short chain fatty acids. The structures of the cardiolipin and monolysocardiolipin have been elucidated by post source decay mass spectrometry analysis. A large variety of cardiolipin and monolysocardiolipin species were found in A. baumannii. Similar lysocardiolipin levels were found in the two clinical strains A. baumannii ATCC19606(T) and AYE whereas in the nonpathogenic strain Acinetobacter baylyi ADP1 lysocardiolipin levels were highly reduced.
Group B Streptococcus (GBS) causes severe infection in the central nervous system. In this study, brain mitochondrial function was investigated by simulating infection of isolated mitochondria with GBS, which resulted in loss of mitochondrial activity. The β-hemolysin expressing strains GBS-III-NEM316 and GBS-III-COH31, but not the gGBS-III-COH31 that does not express β-hemolysin, caused dissipation of preformed mitochondrial membrane potential (Δψm). This indicates that β-hemolysin is responsible for decreasing of the reducing power of mitochondria. GBS-III-COH31 interacted with mitochondria causing increase of oxygen consumption, due to uncoupling of respiration, blocking of ATP synthesis, and cytochrome c release outside mitochondria. Moreover, the mitochondrial systems contributing to the control of cellular Ca2+ uptake were lost. In spite of these alterations, mitochondrial phospholipid content and composition did not change significantly, as evaluated by MALDI-TOF mass spectrometry. However, exogenous cardiolipin (CL) and dipalmitoylphosphatidylcholine (DPPC) attenuated the uncoupling effect of GBS-III-COH31, although with different mechanisms. CL was effective only when fused to the inner mitochondrial membrane, probably reducing the extent of GBS-induced proton leakage. DPPC, which is not able to fuse with mitochondrial membranes, exerted its effect outside mitochondria, likely by shielding mitochondria against GBS β-hemolysin attack.
Squarebop I bacteriorhodopsin is a light-activated proton pump present in the membranes of the archeon Haloquadratum walsbyi, a square-shaped organism representing 50-60% of microbial population in the crystallizer ponds of the coastal salterns. Here we describe: (1) the operating mode of a bioreactor designed to concentrate the saltern biomass through a microfiltration process based on polyethersulfone hollow fibers; (2) the isolation of Squarebop I bacteriorhodopsin from solubilized biomass by means of a single chromatographic step; (3) tightly bound lipids to the isolated and purified protein as revealed by MALDI-TOF/MS analysis; (4) the photoactivity of Squarebop I bacteriorhodopsin isolated from environmental samples by flash spectroscopy. Yield of the isolation process is 150 μg of Squarebop I bacteriorhodopsin from 1l of 25-fold concentrated biomass. The possibility of using the concentrated biomass of salterns, as renewable resource for the isolation of functional bacteriorhodopsin and possibly other valuable bioproducts, is briefly discussed.
A number of viruses contain lipid membranes, which are in close contact with capsid proteins and/or nucleic acids and have an important role in the viral infection process. In this study membrane lipids of intact viruses have been analysed by MALDI-TOF/MS with a novel methodology avoiding lipid extraction and separation steps. To validate the novel method, a wide screening of viral lipids has been performed analysing highly purified intact bacterial and archaeal viruses displaying different virion architectures. Lipid profiles reported here contain all lipids previously detected by mass spectrometry analyses of virus lipid extracts. Novel details on the membrane lipid composition of selected viruses have also been obtained. In addition we show that this technique allows the study of lipid distribution easily in subviral particles during virus fractionation. The possibility to reliably analyse minute amounts of intact viruses by mass spectrometry opens new perspectives in analytical and functional lipid studies on a wider range of viruses including pathogenic human ones, which are difficult to purify in large amounts.
A simple and fast method of lipid analysis of isolated intact mitochondria by means of MALDI-TOF mass spectrometry is described. Mitochondria isolated from bovine heart and yeast have been employed to set up and validate the new method of lipid analysis. The mitochondrial suspension is directly applied over the target and, after drying, covered by a thin layer of the 9-aminoacridine matrix solution. The lipid profiles acquired with this procedure contain all peaks previously obtained by analyzing the lipid extracts of isolated mitochondria by TLC and/or mass spectrometry. The novel procedure allows the quick, simple, precise, and accurate analysis of membrane lipids, utilizing only a tiny amount of isolated organelle; it has also been tested with intact membranes of the bacterium Paracoccus denitrificans for its evolutionary link to present-day mitochondria. The method is of general validity for the lipid analysis of other cell fractions and isolated organelles.
The use of the matrix 9-aminoacridine has been recently introduced in matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry analysis of both anionic and cationic phospholipids. In the present study, we take advantage of this technique to analyze the lipids of porcine olfactory mucosa and a membrane fraction enriched in cilia. Thin-layer chromatography (TLC) and (31)P-NMR analyses of the lipid extracts were also performed in parallel. MALDI-TOF-MS allowed the identification of lipid classes in the total lipid extract and individual lipids present in the main TLC bands. The comparison between the composition of the two lipid extracts showed that: (1) cardiolipin, present in small amount in the whole olfactory mucosa lipid extract, was absent in the extract of membranes enriched in olfactory cilia, (2) phosphatidylethanolamine species were less abundant in ciliary than in whole epithelial membranes, (3) sulfoglycosphingolipids were detected in the lipid extract of ciliary membranes, but not in that of epithelial membranes. Our results indicate that the lipid pattern of ciliary membranes is different from that of whole-tissue membranes and suggest that olfactory receptors require a specific lipid environment for their functioning.
A method of direct lipid analysis by MALDI mass spectrometry in intact membranes, without prior extraction/separation steps, is described. The purple membrane isolated from the extremely halophilic archaeon Halobacterium salinarum was selected as model membrane. Lyophilized purple membrane were grinded with 9-aminoacridine (9-AA) as dry matrix, and the powder mixture was crushed in a mechanical die press to form a thin pellet. Small pieces of the pellet were then attached to the MALDI target and directly analyzed. In parallel, individual archaebacterial phospholipids and glycolipids, together with the total lipid extract of the purple membrane, were analyzed by MALDI-TOF/MS using 9-AA as the matrix in solution. Results show that 9-AA represents a suitable matrix for the conventional MALDI-TOF/MS analysis of lipid extracts from archaeal microorganisms, as well as for fast and reliable direct dry lipid analysis of lyophilized archaebacterial membranes. This method might be of general application, offering the advantage of quickly gaining information about lipid components without disrupting or altering the membrane matrix.
Lipids of cytochrome c oxidase (COX) of Paracoccus denitrificans have been identified by MALDI-TOF MS direct analyses of isolated protein complexes, avoiding steps of lipid extraction or chromatographic separation. Two different COX preparations have been considered in this study: the enzyme core consisting of subunits I and II (COX 2-SU) and the complete complex comprising all four subunits (COX 4-SU). In addition, MALDI-TOF MS lipid profiles of bacterial COX are also compared with those of the isolated mitochondrial COX and bacterial bc1 complex. We show that the main lipids associated with bacterial COX 4-SU are phosphatidylglycerol (PG) and phosphatidylcholine (PC), and minor amounts of cardiolipin (CL). PG and PC are absent in the COX 2-SU preparation lacking subunits III and IV, whereas CL is still present. Quantitative analyses indicate that at variance from mitochondrial COX, cardiolipin is present in substoichiometric amounts in bacterial COX, at a CL:COX molar ratio of ∼1:10. We conclude that bacterial COX does not require CL for structure or its activity.
The idea of a Cardiolipin workshop in Italy came to the meeting organizers in June 2011, during the minisabbatical of Angela Corcelli in New Yok City in the laboratory of Michael Schlame. They thought to take advantage of the presence of the 54th International Conference on the Bioscience of Lipids (ICBL) in Bari in 2013 to organize the Cardiolipin workshop as a satellite event. The web page of the Cardiolipin Meeting was kindly supported by the Eurofedlipid organization. About 60 scientists attended the meeting focused on the multiple roles of cardiolipin in mitochondria in physiological and pathological states in variuos organisms as well as in bacterial membranes. In addition to ICBL participants, many students and colleagues of the Universities of Bari and Lecce attended the meeting, increasing the number of total participants to about 100. As defects in cardiolipin metabolism may cause Barth Syndrome, the meeting also presented an occasion to establish contacts between the nascent Italian Barth Syndrome Foundation and scientists actively involved in cardiolipin research.
Rat liver mitochondria were isolated in parallel in two different isolation buffers: a standard buffer containing mannitol/sucrose and a nearly physiological KCl based solution. The two different organelle preparations were comparatively characterized by respiratory activity, heme content, microsomal and Golgi contamination, electron microscopy and lipid analyses. The substitution of saccharides with KCl in the isolation buffer does not induce the formation of mitoplasts or disruption of mitochondria. Mitochondria isolated in KCl buffer are coupled and able to maintain a stable transmembrane charge separation. A number of biochemical and functional differences between the two organelle preparations are described; in particular KCl mitochondria exhibit lower cardiolipin content and smaller intracristal compartments in comparison with the standard mitochondrial preparation.
At variance from standard phospholipids of eubacteria and eukaryotes, archaebacterial diether phospholipids contain branched alcohol chains (phytanol) linked to glycerol exclusively with ether bonds. Giant vesicles (GVs) constituted of different species of archaebacterial diether phospholipids and glycolipids (archaeosomes) were prepared by electroformation and observed under a phase contrast and/or fluorescence microscope. Archaebacterial lipids and different mixtures of archaebacterial and standard lipids formed GVs which were analysed for size, yield and ability to adhere to each other due to the mediating effects of certain plasma proteins. GVs constituted of different proportions of archaeal or standard phosphatidylcholine were compared. In nonarchaebacterial GVs (in form of multilamellar lipid vesicles, MLVs) the main transition was detected at Tm = 34. 2°C with an enthalpy of ΔH = 0.68 kcal/mol, whereas in archaebacterial GVs (MLVs) we did not observe the main phase transition in the range between 10 and 70°C. GVs constituted of archaebacterial lipids were subject to attractive interaction mediated by beta 2 glycoprotein I and by heparin. The adhesion constant of beta 2 glycoprotein I – mediated adhesion determined from adhesion angle between adhered GVs was in the range of 10−8 J/m2. In the course of protein mediated adhesion, lateral segregation of the membrane components and presence of thin tubular membranous structures were observed. The ability of archaebacterial diether lipids to combine with standard lipids in bilayers and their compatibility with adhesion-mediating molecules offer further evidence that archaebacterial lipids are appropriate for the design of drug carriers.
A novel halophilic archaeon, strain CG-1T, belonging to the genus Natronococcus was isolated from sediment of the soda lake Chagannor in Inner Mongolia, China. The colonies of this strain were pink pigmented, the intensity of the color decreased when the cells grew at salt saturation. The cells were nonmotile cocci and strictly aerobic. Hypotonic treatment did not cause cell lysis, even in distilled water. Strain CG- 1T grew in the range 15-30.0 % (w/v) NaCl and at 30-50 °C and pH 8.0-11.0, with optimal growth occurring at 25-30 % (w/v) NaCl and at 37°45 °C and pH 9-9.5. MgCl2 was not required for growth. Strain CG-1T was most closely related to the type strains of Natronococcus amylolyticus Ah-36T and Natronococcus occultus SP4T, with which it shared 98.4 % and 95.7 % 16S rRNA gene sequence similarity, respectively. The polar lipids consisted of C20C20 and C20C25 derivatives of phosphatidylglycerol (PG), phosphatidylglycerol phosphate methyl ester (PGP-Me) and minor phospholipids components. No glycolipids were detected. The DNA G+C content of strain CG-1T was 62.1 mol%. DNA-DNA hybridization with the type strain of Natronococcus amylolyticus DSM 10524T, phylogenetically the most closely related species, was 39 %; this value showed that strain CG-1T was genotypically not related to this species. The comparison of 16S rRNA gene sequences, detailed phenotypic characterization, polar lipid profile and DNA-DNA hybridization studies revealed that strain CG-1T belongs to the genus Natronococcus, and constitutes a novel species for which the name Natronococcus roseus sp. nov. is proposed. The type strain is CG-1T (= IBRC-M 10656 = JCM 17958).
Osmotic shock was used as a tool to obtain cardiolipin (CL) enriched chromatophores of Rhodobacter sphaeroides. After incubation of cells in iso- and hyper-osmotic buffers both chromatophores with a physiological lipid profile (Control) and with an almost doubled amount of CL (CL enriched) were isolated. Spectroscopic properties, reaction centre (RC) and reducible cytochrome (cyt) contents in Control and CL enriched chromatophores were the same. The oxidoreductase activity was found higher for CL enriched than for Control chromatophores, raising from 60±2 to 93±3 mol cyt c s−1 (mol total cyt c)−1. Antymicin and myxothiazol were tested to prove that oxidoreductase activity thus measured was mainly attributable to the cyt bc1 complex. The enzyme was then purified from BH6 strain yielding a partially delipidated and almost inactive cyt bc1 complex, although the protein was found to maintain its structural integrity in terms of subunit composition. The ability of CL in restoring the activity of the partially delipidated cyt bc1 complex was proved in micellar systems by addition of exogenous CL. Results here reported indicate that CL affects oxidoreductase activity in the bacterium Rhodobacter sphaeroides both in chromatophore and in purified cyt bc1 complex.
The structures of archaeal glycerophospholipids and glycolipids are unique in that they consist of phytanyl substituents ether linked to the glycerol backbone, imparting stability to the molecules. In this contribution, we described multiple-stage linear ion-trap combined with high resolution mass spectrometry toward structural characterization of this lipid family desorbed as lithiated adduct ions or as the [M-H]- and [M-2H]2- ions by ESI. MSn on various forms of the lithiated adduct ions yielded rich structurally informative ions leading to complete structure identification of this lipid family, including the location of the methyl branches of the phytanyl chain. By contrast, structural information deriving from MSn on the [M-H]- and [M-2H]2- ions is not complete. The fragmentation pathways in an ion-trap, including unusual internal loss of glycerol moiety and internal loss of hexose found for this lipid family were proposed. This mass spectrometric approach provides a simple tool to facilitate confident characterization of this unique lipid family
In this paper the functionalization of single walled carbon nanotubes (SWNTs) with the site-specific single aminoacid mutant D96N of Bacteriorhodopsin (PM- D96N) in its native purple membrane (PM) patches has been investigated in view of the possible application of such nanocomposites as active materials in FET or impedance sensors. The procedure of functionalization has been performed without using any chemical, including surfactants which can delipidate the PM. Absorption spectroscopy investigations provide evidence of the occurrence of hydrophobic interactions between the SWNT walls and the PM - D96N. The PM - D96N biosystem seems to undergoes conformation changes due to assembling on the nanotube walls. The chemical interactions among the components can effectively combine the sensitivity of PM-D96N with the ballistic charge transport properties of the SWNTs to exploit in electronic sensor devices for analyte detection.
In this work, single walled carbon nanotubes (SWNTs) have been chemically functionalized at their walls with a membrane protein, namely the mutated bacteriorhodopsin D96N, integrated in its native archaeal lipid membrane. The modification of the SWNT walls with the mutant has been carried out in different buffer solutions, at pH 5, 7.5 and 9, to investigate the anchoring process, the typical chemical and physical properties of the component materials being dependent on the pH. The SWNTs modified by interactions with bacteriorhodopsin membrane patches have been characterized by UV-vis steady state, Raman and attenuated total reflection Fourier transform infrared spectroscopy and by atomic force and transmission electron microscopy. The investigation shows that the membrane protein patches wrap the carbon walls by tight chemical interactions undergoing a conformational change; such chemical interactions increase the mechanical strength of the SWNTs and promote charge transfers which p-dope the nano-objects. The functionalization, as well as the SWNT doping, is favoured in acid and basic buffer conditions; such buffers make the nanotube walls more reactive, thus catalysing the anchoring of the membrane protein. The direct electron communication among the materials can be exploited for effectively interfacing the transport properties of carbon nanotubes with both molecular recognition capability and photoactivity of the cell membrane for sensing and photoconversion applications upon integration of the achieved hybrid materials in sensors or photovoltaic devices.
We have isolated and characterized the light-driven proton pump Bop I from the ultrathin square archaeon Haloquadratum walsbyi, the most abundant component of the dense microbial community inhabiting hypersaline environments. The disruption of cells by hypo-osmotic shock yielded Bop I retinal protein highly enriched membranes, which contain one main 27 kDa protein band together with a high content of the carotenoid bacterioruberin. Light-induced pH changes were observed in suspensions of Bop I retinal protein-enriched membranes under sustained illumination. Solubilization of H. walsbyi cells with Triton X-100, followed by phenyl-Sepharose chromatography, resulted in isolation of two purified Bop I retinal protein bands; mass spectrometry analysis revealed that the Bop I was present as only protein in both the bands. The study of light/dark adaptations, M-decay kinetics, responses to titration with alkali in the dark and endogenous lipid compositions of the two Bop I retinal protein bands showed functional differences that could be attributed to different protein aggregation states. Proton-pumping activity of Bop I during the photocycle was observed in liposomes constituted of archaeal lipids. Similarities and differences of Bop I with other archaeal proton-pumping retinal proteins will be discussed.
L'idea progettuale proposta consiste nell'esplorare l'enorme potenziale biotecnologico racchiuso nelle acque delle saline di Margherita di Savoia, in Puglia. La ricerca si propone in particolare di valutare la possibilità di utilizzare le vasche delle saline costiere come bioreattori naturali per la produzione di biomateriali ad alto valore aggiunto di interesse industriale, soprattutto per la optoelettronica. Mediante tecniche microbiologiche si partirà dallo studio delle comunità naturali degli ambienti ipersalini, per approdare agli studi molecolari utilizzando tecniche di tipo biochimico. L'attività di ricerca ruoterà attorno ad un'interessante proteina fotoattivabile, la batteriorodopsina (BR), un biomateriale fotosensibile, ad elevata stabilità termica e fotochimica, normalmente presente nelle membrane dei microrganismi archeali alofili estremi.I risultati attesi dall'attività di ricerca proposta sono approfondire le conoscenze della biomassa presente nella salina pugliese e, soprattutto, valutare la quantità di BR presente nelle acque, allo scopo di utilizzare le vasche salate, non solo per la produzione di sale, ma anche per la produzione di diversi bioprodotti ad alto valore aggiunto (come batteriorodopsina, pigmenti e lipidi archeali). Questo progetto mira in particolare alla valorizzazione e all'impiego di tali bioprodotti, che attualmente non vengono utilizzati nell'industria della produzione del sale, in altri ambiti industriali.
Un metodo molto efficace per il rilevamento di esplosivi in zone di conflitto o in controlli aereoportuali, è il fiuto di cani addestrati. Le sostanze rilasciate dagli ordigni entrando nel naso si legano ai recettori olfattivi (RO) che riescono a riconoscere molecole di varia natura. I RO sono proteine a 7 eliche transmembrana associati a proteina G che non sono espressi solo nel sistema olfattivo ma anche nel cervello, nei reni e nel cuore con funzioni ancora sconosciute.I RO legandosi alle molecole volatili disperse nell'aria sono ideali per la costruzione di strumenti ibridi che possano servire o da rilevatori ambientali o da strumenti di screening diagnostico non invasivi.Lo scopo del progetto è dunque quello di accoppiare la sensitività dei RO con materiali, come il grafene, dalle particolari proprietà meccaniche ed elettriche, per la realizzazione di sensori portatili e poco costosi (iNose o smell-E) da poter essere utilizzati come strumenti diagnostici per l'ambiente e la salute. Di particolare interesse è lo studio della risposta dei RO agli esplosivi per la costruzione di un naso elettronico che contribuisca a rivelarne la presenza. La tecnologia utilizzata potrebbe anche essere usata per realizzare piattaforme di studio farmacologico per quelle malattie che coinvolgono i RO.Per realizzare tale progetto è necessario ampliare le conoscenze di base sulle proprietà dei RO e sperimentare le capacità di interazione dei nuovi nanomateriali con campioni biologici.
Condividi questo sito sui social