Effettua una ricerca
Anna Montefusco
Ruolo
Ricercatore
Organizzazione
Università del Salento
Dipartimento
Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali
Area Scientifica
Area 05 - Scienze biologiche
Settore Scientifico Disciplinare
BIO/01 - Botanica Generale
Settore ERC 1° livello
LS - Life sciences
Settore ERC 2° livello
LS9 Applied Life Sciences and Non-Medical Biotechnology: Applied plant and animal sciences; food sciences; forestry; industrial, environmental and non-medical...
Settore ERC 3° livello
LS9_1 Non-medical biotechnology and genetic engineering (including transgenic organisms, recombinant proteins, biosensors, bioreactors, microbiology)
In this paper we report the metabolism of hexosamines and the cellular compartmentalization of glycoconjugates in the cyanobacterium Leptolyngbya VRUC 135 by using D -[U- 14 C]glucosamine as tracer. Glycoproteins as well as lipopolysaccharides were detected in the cell wall, membrane and buffer-soluble polymers. Evidence is also reported on the presence of lipopolysaccharides as released polymers.
This study provides information about the carbohydrate present in tomato pomace (skins, seeds, and vascular tissues) as well as in the byproducts of the lycopene supercritical carbon dioxide extraction (SC-CO2) such as tomato serum and exhausted matrix and reports their conversion into bioethanol. The pomace, constituting approximately 4% of the tomato fruit fresh weight, and the SC-CO2-exhausted matrix were enzyme saccharified with 0.1% Driselase leading to sugar yields of ∼383 and ∼301 mg/g dw, respectively. Aliquots of the hydrolysates and of the serum (80% tomato sauce fw) were fermented by Saccharomyces cerevisiae. The bioethanol produced from each waste was usually >50% of the calculated theoretical amount, with the exception of the exhausted matrix hydolysate, where a sugar concentration >52.8 g/L inhibited the fermentation process. Furthermore, no differences in the chemical solubility of cell wall polysaccharides were evidenced between the SC-CO2-lycopene extracted and unextracted matrices. The deduced glycosyl linkage composition and the calculated amount of cell wall polysaccharides remained similar in both matrices, indicating that the SC-CO2 extraction technology does not affect their structure. Therefore, tomato wastes may well be considered as potential alternatives and low-cost feedstock for bioethanol production.
Tribulus terrestris L. (Zygophyllaceae) is an annual plant commonly known as Puncture vine. It is dramatically gaining interest as a rich source of saponins. T. terrestris is a promising ingredient for many industries and recent patents on dermatological applications support the use of this plant for cosmetics and hygiene. Nonetheless problems arise in the selection of the material to be used. The extracts of different origins may differ substantially. Natural speciation processes normally influence ‘variations’ in wild-crafted medicinal plants. The genus Tribulus is emblematic. Taxonomic status of T. terrestris is complicated by the wide geographical distribution leading to high levels of genetic polymorphism. Being aware of such variability we selected 3 commercial Tribulus extracts and compared their biological effect on Candida albicans with the effect produced by an extract from local plants (South of Apulia, Italy). One of the commercial extracts with the best anti-candida performance was used to substitute triclosan in a detergent formulation and it proved to improve the product performance in the control of potentially pathogenic skin flora such as C. albicans.
Plants are ideal bioreactors for the production of macromolecules but transport mechanisms are not fully understood and cannot be easily manipulated. Several attempts to overproduce recombinant proteins or secondary metabolites failed. Because of an independent regulation of the storage compartment, the product may be rapidly degraded or cause self-intoxication. The case of the anti-malarial compound artemisinin produced by Artemisia annua plants is emblematic. The accumulation of artemisinin naturally occurs in the apoplast of glandular trichomes probably involving autophagy and unconventional secretion thus its production by undifferentiated tissues such as cell suspension cultures can be challenging. Here we characterize the subcellular compartmentalization of several known fluorescent markers in protoplasts derived from Artemisia suspension cultures and explore the possibility to modify compartmentalization using a modified SNARE protein as molecular tool to be used in future biotechnological applications. We focused on the observation of the vacuolar organization in vivo and the truncated form of AtSYP51, 51H3, was used to induce a compartment generated by the contribution of membrane from endocytosis and from endoplasmic reticulum to vacuole trafficking. The artificial compartment crossing exocytosis and endocytosis may trap artemisinin stabilizing it until extraction; indeed, it is able to increase total enzymatic activity of a vacuolar marker (RGUSChi), probably increasing its stability. Exploring the 51H3-induced compartment we gained new insights on the function of the SNARE SYP51, recently shown to be an interfering-SNARE, and new hints to engineer eukaryote endomembranes for future biotechnological applications.
Vacuolar Sorting Determinants (VSDs) have been extensively studied in plants but the mechanisms for the accumulation of storage proteins in somatic tissues are not yet fully understood. In this work we used two mutated versions of well-documented vacuolar fluorescent reporters, a GFP fusion in frame with the C-terminal VSD of tobacco chitinase (GFPChi) and an N-terminal fusion in frame with the sequence-specific VSD of the barley cysteine protease aleurain (AleuGFP). The GFP sequence was mutated to present an N-glycosylation site at the amino-acid position 133. The reporters were transiently expressed in Nicotiana tabacum protoplasts and agroinfiltrated in Nicotiana benthamiana leaves and their distribution was identical to that of the non-glycosylated versions. With the glycosylated GFPs we could highlight a differential ENDO-H sensitivity and therefore differential glycan modifications. This finding suggests two different and independent routes to the vacuole for the two reporters. BFA also had a differential effect on the two markers and further, inhibition of COPII trafficking by a specific dominant-negative mutant (NtSar1h74I) confirmed that GFPChi transport from the ER to the vacuole is not fully dependent on the Golgi apparatus. (C) 2013 Elsevier Masson SAS. All rights reserved.
Condividi questo sito sui social