Effettua una ricerca
Luigi Carbone
Ruolo
III livello - Ricercatore
Organizzazione
Consiglio Nazionale delle Ricerche
Dipartimento
Non Disponibile
Area Scientifica
AREA 03 - Scienze chimiche
Settore Scientifico Disciplinare
CHIM/03 - Chimica Generale ed Inorganica
Settore ERC 1° livello
PE - PHYSICAL SCIENCES AND ENGINEERING
Settore ERC 2° livello
PE5 Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry
Settore ERC 3° livello
PE5_6 New materials: oxides, alloys, composite, organicinorganic hybrid, nanoparticles
In this work, we report the synthesis of novel inorganic-organic hybrid nanomaterials(GO@Fe3O4/CuPc) and GO@Fe3O4/ZnPc) consisting of sheets of grapheneoxide (GO) decorated by iron oxide nanoparticles (Fe3O4), the wholeheterostructure functionalized with metallo-phthalocyanines (MPc, M:Cu orZn). First the synthesis of nanomaterial (GO@Fe3O4) was prepared byhydrothermal self-assembly process through the mixture of graphene oxide andFe?2/Fe?3 salt solution. The metallo-phthalocyanines anchorage on the surfaceof nanosystem was lately performed by facile and effective ultrasonicationmethod. The structure, composition and morphology of nanohybrids andintermediates were investigated by Fourier transform infrared spectroscopy,X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry,UV-visible spectroscopy, scanning and transmission electron microscopy andimpedance spectroscopy. All the results suggested that iron-based nanoparticleswere successfully deposited onto graphene oxide sheet networks in the form ofFe3O4, forming nanospheres, decreasing in lattice defects of the GO sheets anddramatically increasing the dielectric properties of nanosystems. Nanomaterialspresented saturation magnetization in the 52-58 emu/g and superparamagneticbehavior. It was observed that the values of dielectric constant decreased as afunction of the amount of phthalocyanines in the nanomaterials. Therefore,because of their versatile magnetic and dielectric performances, the novelsuperparamagnetic hybrid nanomaterials, herein described, can be consideredas potential for microwave devices.
Arrays of liquid crystal defects-linear smectic dislocations-are used to trap semiconductor CdSe/CdS dot-in-rods which behave as single-photon emitters. Measurements of the emission diagram are combined together with measurements of the emitted polarization of the single emitters. It is shown that the dot-in-rods are confined parallel to the linear defects to allow for a minimization of the disorder energy associated with the dislocation cores. It is demonstrated that the electric dipoles associated with the dot-in-rods, tilted with respect to the rods, remain oriented in the plane including the smectic linear defects and perpendicular to the substrate, most likely due to dipole/dipole interactions between the dipoles of the liquid crystal molecules and those of the dot-in-rods. Using smectic dislocations, nanorods can consequently be oriented along a unique direction for a given substrate, independently of the ligands' nature, without any induced aggregation, leading as well to a fixed azimuthal orientation for the dot-in-rods' dipoles. These results open the way for the fine control of nanoparticle anisotropic optical properties, in particular, fine control of single-photon emission polarization.
Colloidal semiconductor nanocrystals are among the best candidates for realizing a nano-structured single photon source at room temperature. In this paper we present a new and efficient optical method to assess the quality of a sample of nanocrystals as single-photon emitters, by an ensemble measurement of photoluminescence. We relate the ensemble photoluminescence measurements to the photon statistics of single emitters by a simple theoretical model. As an example we compare two different kinds of CdSe/CdS dot-in-rods, showing a similar degree of single photon emission when observed on a selection of single nanocrystals. The results are compared with anti-bunching measurements realized on single nanocrystals of the two kinds.
This manuscript describes the preparation of green nanovesicles by using cardanol as renewable starting material with embedded minor amounts of phthalazines, a class of heterocyclic bioactive compounds. The nanovesicles were prepared by stirring induced self-assembly in aqueous medium without involvement of any organic solvent. Dynamic light scattering studies and transmission electron microscopy revealed the formation of nanostructure with an average diameter in the range of 227-375 nm and a well defined spherical morphology. Potential antioxidant activity of nanovesicles were evaluated for the first time by 2,2?-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) scavenging assay and bleomycin-dependent DNA damage. Moreover, their cytotoxic effects were also investigated by 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay on different tumour cell lines. Unloaded nanovesicles showed moderate antioxidant and antitumoural activity that was further enhanced particularly by embedding the 2-[4-(4-Hydrazinophthalazin-1-yl)-phenyl]-isoindole-1,3-dione compound.
Suitable postsynthesis surface modification of lead-chalcogenide quantum dots (QDs) is crucial to enable their integration in photovoltaic devices. Here we exploit arenethiolate anions to completely replace pristine oleate ligands on PbS QDs in the solution phase, thus preserving the colloidal stability of QDs and allowing their solution-based processability into photoconductive thin films. Complete QD surface modification relies on the stronger acidic character of arenethiols compared to that of alkanethiols and is demonstrated by FTIR and UVvisNIR absorption spectroscopy analyses, which provide quantitative evaluation of stoichiometry and thermodynamic stability of the resulting system. Arenethiolate ligands induce a noticeable reduction of the optical band gap of PbS QDs, which is described and explained by charge transfer interactions occurring at the organic/inorganic interface that relax exciton confinement, and a large increase of QD molar absorption coefficient, achieved through the conjugated moiety of the replacing ligands. In addition, surface modification in the solution phase promotes switching of the symmetry of PbS QD self-assembled superlattices from hexagonal to cubic close packing, which is accompanied by further reduction of the optical band gap, ascribed to inter-QD exciton delocalization and dielectric effects, together with a drastic improvement of the charge transport properties in PbS QD solids. As a result, smooth dense-packed thin films of arenethiolate-capped PbS QDs can be integrated in heterojunction solar cells via a single solution-processing step. Such single PbS QD layers exhibit abated cracking upon thermal or chemical postdeposition treatment, and the corresponding devices generate remarkable photocurrent densities and overall efficiencies, thus representing an effective strategy toward low-cost processing for QD-based photovoltaics.
One frontier approach of colloidal chemistry to nanoscale entities capable to exhibit enhanced or even unconventional physical-chemical properties as well as diversified capabilities for multitask applications envisages fabrication of breed-new hybrid nanocrystals (HNCs) with a spatially controlled distribution of their chemical composition. These are all-inorganic multicomponent nanoheterostructures in which domains of distinct materials are arranged via permanent bonding interfaces in elaborate concentric/eccentric onion-like or oligomer-type architectures. This review covers recent progress achieved in the wet-chemical development of HNCs based on functional associations of semiconductors, metals and magnetic compounds. Within the frame of seeded-growth techniques to heteroepitaxial deposition in solution media, relevant synthetic strategies are illustrated, along with systematic examination of the mechanisms by which heterostructures can be selectively accessed in nonequivalent topological configurations. The peculiar properties and technological perspectives offered by such novel generations of complex nanomaterials are also succinctly highlighted. © 2010 Elsevier Ltd. All rights reserved.
We report on the development of efficient and low cost single photon sources for quantum communications. The work discusses the suitability of colloidal nanocrystals as sources of quantum light as well as it draws out possible solutions to overtake the drawbacks of these emitters, such as blinking and polarization. © 2012 IEEE.
The photon statistics of CdSe/CdS dot-in-rods nanocrystals is studied with a method involving postselection of the photon detection events based on the photoluminescence count rate. We show that flickering between two states needs to be taken into account to interpret the single-photon emission properties. With postselection we are able to identify two emitting states: the exciton and the charged exciton (trion), characterized by different lifetimes and different second-order correlation functions. Measurements of the second-order autocorrelation function at zero delay with postselection shows a degradation of the single-photon emission for CdSe/CdS dot-in-rods in a charged state that we explain by deriving the neutral and charged biexciton quantum yields. © 2014 American Physical Society.
CdSe/CdS dot-in-rod (DR) nanocrystals, i.e. semiconductor nanoparticles consisting of a CdSe spherical core surrounded by a rod-shaped CdS shell, recently emerged as efficient sources of non-classical light for quantum cryptography applications. This paper discusses the influence of shell size on DRs quantum emission properties, showing that shell elongation has detrimental effects on DRs single photon emission effectiveness. © 2013 IEEE.
Samples of manganese-zinc (MnZn) ferrites were successfully prepared by hydrothermal syntheses using different compositions of the reactive system (H2O)(1-x) :(EG) (x) (x = 0, 0.2, 0.4, 0.6, 0.8, and 1.0), where EG = ethylene glycol. The samples were fully investigated by powder X-ray diffraction, Fourier transform infrared spectroscopy for both liquid and solid specimens, Mossbauer spectroscopy, vibrating sample magnetometer, and transmission electron microscopy. All the MnZn ferrites presented spinel phase and average particle diameters between 3.1 and 12.1 nm. The increase in the x values results in a decrease in the particle sizes. The FTIR spectra performed in liquid phase showed significant interaction between EG and metallic precursors used in the synthesis. Magnetic features as for instance saturation magnetization (M (S)) also decreases upon increasing the x values. In addition, all synthesized samples exhibited a superparamagnetic character at room temperature. The experimental methodology presented in this work is used to obtain superparamagnetic nanoparticles with controlled size (smaller than 13 nm) and morphology.
Periodic micro-arrays of straight linear defects containing nanoparticles can be created over large surface areas at the transition from the nematic to smectic-A phase in a nanoparticle-liquid crystal (LC) composite material confined under the effect of conflicting anchoring conditions (unidirectional planar vs normal) and electric fields. Anisomeric dichroic dye molecules and rod-shaped fluorescent semiconductor nanocrystals (dot-in-rods) with large permanent electric dipole and high linearly polarized photoluminescence quantum yield align parallel to the local LC molecular director and follow its reorientation under application of the electric field. In the nano-sized core regions of linear defects, where the director is undefined, anisotropic particles align parallel to the defect whereas spherical quantum dots do not show any particular interaction with the defect. Under application of an electric field, ferroelectric semiconductor nanoparticles in the core region align along the field, perpendicular to the defect direction, whereas dichroic dyes remain parallel to the defect. This study provides useful insights into the complex interaction of anisotropic nanoparticles and anisotropic soft materials such as LCs in the presence of external fields, which may help the development of field-responsive nanoparticle-based functional materials.
Blinking effect and multi-excitonic emission can be independently addressed by tuning both core and shell dimension. By confocal techniques measurement, we show dot-in-rods as blinking-free sources of single photon on demand at room temperature.
We present a method that allows determining the band-edge exciton fine structure of CdSe/CdS dot-in-rods samples based on single particle polarization measurements at room temperature. We model the measured emission polarization of such single particles considering the fine structure properties, the dielectric effect induced by the anisotropic shell, and the measurement configuration. We use this method to characterize the band-edge exciton fine structure splitting of various samples of dot-in-rods. We show that, when the diameter of the CdSe core increases, a transition from a spherical like band-edge exciton symmetry to a rod-like band edge exciton symmetry occurs. This explains the often reported large emission polarization of such particles compared to spherical CdSe/CdS emitters. (Chemical Equation Presented).
Glass micromachining is a basic technology to achieve microfluidic networks for lab-on-a-chip applications. Among several methods to microstructure glass, the simplest and most widely applied is wet chemical etching (WE). However, accurate control of the reaction conditions to perform reproducible, fast and safe glass etching is not straightforward. Herein, microwave-assisted WE is demonstrated to intensify the glass etching action under safe working and finely monitored operative conditions and to produce smooth deep channels in short processing times with reduced underetching effects.
Cardanol is a natural and renewable organic raw material obtained as the major chemical component by vacuum distillation of cashew nut shell liquid. In this work a new sustainable procedure for producing cardanol-based micellar nanodispersions having an embedded lipophilic porphyrin itself peripherally functionalized with cardanol substituents (porphyrin-cardanol hybrid) has been described for the first time. In particular, cardanol acts as the solvent of the cardanol hybrid porphyrin and cholesterol as well as being the main component of the nanodispersions. In this way a "green" micellar nanodispersion, in which a high percentage of the micellar system is derived from renewable "functional" molecules, has been produced.
Three different families of chemically engineered rod-shaped CdSe/CdS colloidal nanocrystals have been embedded into a poly(methyl methacrylate) matrix to realize a set of color-tunable photoluminescent filters for RGB light emitting devices, which demonstrate excellent optical transparency (in the range of wavelengths not corresponding to nanocrystal absorption), efficient photoluminescence and good thermal-and photo-stability. Accurate morphological and optical characterization of nanocomposite foils is provided as a function of nanorod size and content, and their color conversion properties are investigated in combination with a blue-emitting LED source. This approach combines the tunable optical features of inorganic quantum-confined light emitters with the facile processability of the polymeric host and offers a highly versatile design tool, which can be exploited in a wide spectrum of lighting and photonic devices. The preparation procedure reported here is even compatible with the implementation of an engineered array of microlens on the front-end surface of the nanocomposite foil and thus makes possible a tailored control of the color-converted photometric pattern.
The CoFe2O4 and NiFe2O4 nanoparticles were synthesized exploiting a co-precipitation method and afterward calcinated at 400 A degrees C through two different experimental apparatus: a conventional muffle and rotatory oven. X-ray diffraction (XRD) analysis revealed that nanocrystalline ferrites grew with a face center cubic structure (fcc) and Fd3m symmetry space group. XRD, transmission electron microscopy, and magnetic measurements confirmed the compositional homogeneity and the narrow size particle distribution (6-8 nm) of the sample thermally treated in a rotary oven, in all likelihood due to the sample's constant turning movement. The size of the magnetic particles is extremely important and influences the choice of a potential technological application. For this reason, our study emerges as a new and simple innovating procedure to control the size of magnetic nanoparticles.
Colloidal nanocrystals (Ncs), quantum dots synthesized by means of wet-chemistry, can emit non-classical light at room temperature. In particular, CdSe/CdS dot-in-rods (DRs) with a spherical core and rod like shell have shown linearly polarized single photon emission [1]. A drawback of colloidal nanocrystals as light sources was the phenomenon known as blinking, i.e. photoluminescence fluctuations from ON to OFF periods. It has recently been solved in spherical 'giant' Ncs by growing thicker shells around the core [2]. However this was at the expense of their single photon emission properties. We have recently shown non-blinking behaviour in DRs while keeping single photon emission property by carefully engineering the shell thickness and length [3]. © 2013 IEEE.
Nowadays, integrated photonics is a key technology in quantum information processing (QIP) but achieving all-optical buses for quantum networks with efficient integration of single photon emitters remains a challenge. Photonic crystals and cavities are good candidates but do not tackle how to effectively address a nanoscale emitter. Using a nanowire nanowaveguide, we realise an hybrid nanodevice which locally excites a single photon source (SPS). The nanowire acts as a passive or active sub-wavelength waveguide to excite the quantum emitter. Our results show that localised excitation of a SPS is possible and is compared with free-space excitation. Our proof of principle experiment presents an absolute addressing efficiency ?a ~ 10-4 only ~50% lower than the one using free-space optics. This important step demonstrates that sufficient guided light in a nanowaveguide made of a semiconductor nanowire is achievable to excite a single photon source. We accomplish a hybrid system offering great potentials for electrically driven SPSs and efficient single photon collection and detection, opening the way for optimum absorption/emission of nanoscale emitters. We also discuss how to improve the addressing efficiency of a dipolar nanoscale emitter with our system.
This paper describes the investigation and development of a novel magnetic drug delivery nanosystem (labeled as MO-20) for cancer therapy. The drug employed was oncocalyxone A (onco A), which was isolated from Auxemma oncocalyx, an endemic Brazilian plant. It has a series of pharmacological properties: antioxidant, cytotoxic, analgesic, anti-inflammatory, antitumor and antiplatelet. Onco A was associated with magnetite nanoparticles in order to obtain magnetic properties. The components of MO-20 were characterized by XRD, FTIR, TGA, TEM and Magnetization curves. The MO-20 presented a size of about 30 nm and globular morphology. In addition, drug releasing experiments were performed, where it was observed the presence of the anomalous transport. The results found in this work showed the potential of onco A for future applications of the MO-20 as a new magnetic drug release nanosystem for cancer treatment.
Magnetic nanoparticles functionalized with biomolecules have received special attention due to their various biomedical applications, such as drug delivery and magnetic hyperthermia treatment for cancer. In this study, we present the synthesis and characterization of new nanoparticles coated with anacardic acid derived from cashew nut shell liquid. The results showed that Fe3O4 nanoparticles coated with anacardic acid (AA-MAG) have superparamagnetic behavior and the magnetization is almost equal when compared with the pure Fe3O4. This coating provides stability by preventing the aggregation nanoparticles without losing its magnetization potential. The AA-MAG demonstrates excellent and fast magneto-temperature response which can be used as high-performance hyperthermia agents.
In the realm of semiconductor nanomaterials, a crystal lattice heavily doped with cation/anion vacancies or ionized atomic impurities is considered to be a general prerequisite to accommodating excess free carriers that can support localized surface plasmon resonance (LSPR). Here, we demonstrate a surfactant-assisted nonaqueous route to anisotropic copper sulfide nanocrystals, selectively trapped in the covellite phase, which can exhibit intense, size-tunable LSPR at near-infrared wavelengths despite their stoichiometric, undoped structure. Experimental extinction spectra are satisfactorily reproduced by theoretical calculations performed by the discrete dipole approximation method within the framework of the Drude-Sommerfeld model. The LSPR response of the nanocrystals and its geometry dependence are interpreted as arising from the inherent metallic-like character of covellite, allowed by a significant density of lattice-constitutional valence-band free holes. As a consequence of the unique electronic properties of the nanocrystals and of their monodispersity, coherent excitation of symmetric radial breathing modes is observed for the first time in transient absorption experiments at LSPR wavelengths.
Colloidal inorganic nanocrystals stand out as an important class of advanced nanomaterials owing to the flexibility with which their physical-chemical properties can be controlled through size, shape, and compositional engineering in the synthesis stage and the versatility with which they can be implemented into technological applications in fields as diverse as optoelectronics, energy conversion/production, catalysis, and biomedicine. The use of microwave irradiation as a non-classical energy source has become increasingly popular in the preparation of nanocrystals (which generally involves complex and time-consuming processing of molecular precursors in the presence of solvents, ligands and/or surfactants at elevated temperatures). Similar to its now widespread use in organic chemistry, the efficiency of "microwave flash heating" in dramatically reducing overall processing times is one of the main advantages associated with this technique. This Review illustrates microwave-assisted methods that have been developed to synthesize colloidal inorganic nanocrystals and critically evaluates the specific roles that microwave irradiation may play in the formation of these nanomaterials. If you can't stand the heat, get out of the kitchen: Direct volumetric and efficient heating by microwave irradiation enables the generation of colloidal nanocrystals in a fraction of the time required using conventional heating techniques (see picture). Among the advantages of this non-classical heating method is a great control of reaction temperature, allowing better versatility, reproducibility, and reduced processing times in the fabrication of high-quality nanocrystals. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Silver is the ideal material for plasmonics because of its low loss at optical frequencies, though it is often replaced by a lossier metal, gold. This is because of silver's tendency to tarnish, an effect which is enhanced at the nanoscale due to the large surface-to-volume ratio. Despite chemical tarnishing of Ag nanoparticles (NPs) has been extensively studied for decades, it has not been well understood whether resulted by sulfidation or oxidation processes. This intriguing quest is herein rationalized by studying the atmospheric corrosion of electron beam lithography-fabricated Ag NPs, through nanoscale investigation performed by high-resolution transmission electron microscopy (HRTEM) combined with electron energy loss (EEL) and energy dispersive X-ray (EDX) spectroscopies. We demonstrate that tarnishing of Ag NPs upon exposure to indoor air of an environment located inside a rural site, not particularly influenced by naturally and human-made sulfur sources, is caused by chemisorbed sulfur-based contaminants rather than via an oxidation process. Furthermore, we show that the sulfidation occurs through the formation of crystalline Ag2S bumps onto Ag surface in place of a homogeneous growth of a silver sulfide film. From a single 2D Z-contrast scanning transmission electron microscopy image, a method for 3D reconstruction of silver nanoparticles with extremely high spatial resolution has been derived thus establishing the preferential nucleation of Ag2S bumps in proximity of lattice defects located on the NP surface. Finally, we also provide a straightforward and low-cost solution to achieve stable Ag NPs by passivating them with a self-assembled monolayer of hexanethiols. The sulfidation mechanism inhibition allows to prevent the increased material damping and scattering losses.
Blinking and single-photon emission can be tailored in CdSe/CdS core/shell colloidal dot-in-rods. By increasing the shell thickness it is possible to obtain almost non-blinking nanocrystals, while the shell length can be used to control single-photon emission probability.
In this work, we present the synthesis and characterization of a new surfactant molecule obtained from a byproduct of the cashew nut processing (diphosphorylated cardol, DPC). It is herein used to overcoat magnetic nanoparticles showing spinel structures in order to create new ferrofluids. The nanoparticle structure and magnetic properties have been deeply investigated. DPC-functionalized Fe3O4 and NiFe2O4 samples exhibit higher magnetic saturation than DPC-CoFe2O4. These new ferrofluids reveal appealing as possible nanoparticle stabilizing molecules, magnetic resonance imaging agents, storage systems or in any material science field that requires the employment of biocompatible magnetic stable fluids.
Images of semiconductor "dot-in-rods" and their small clusters are studied by measuring the second-order correlation function with a spatially resolving intensified CCD camera. This measurement allows one to distinguish between a single dot and a cluster and, to a certain extent, to estimate the number of dots in a cluster. A more advanced measurement is proposed, based on higher-order correlations, enabling more accurate determination of the number of dots in a small cluster. Nonclassical features of the light emitted by such a cluster are analyzed. © 2014 Optical Society of America.
Efficient coupling of nanoemitters to photonic or plasmonic structures requires the control of the orientation of the emitting dipoles related to the emitter. Nevertheless the knowledge of the dipole orientation remains an experimental challenge. Many experiments rely on the realization of large sets of samples, in order to be able to get one nanostructure coupled to a well aligned dipole. In order to avoid these statistical trials, the knowledge of the nature of the emitter (single or double dipole) and its orientation are both crucial for a deterministic approach. Based on the theoretical development of the point-dipole emission, we propose in this paper to determine the nature and the polarization of two types of nanoemitters (spherical nanocrystals and dot-in-rod) by the analysis of their emission polarization [1,2]. The nanoemitters we considered in this study are colloidal semiconductor (CdSe/CdS) nanocrystals with different sizes and aspect ratio, allowing us to establish a relationship between the geometry of a nanoemitter and the nature and orientation of its associated radiating dipole.
We use polarization resolved micro-photoluminescence to analyze the dipolar nature of single core/shell cadmium selenide/cadmium sulfide (CdSe/CdS) dot-in-rods. Polarization analysis, anisotropy measurements on more than 400 nanoparticles, and defocused imaging suggest that these nanoparticles behave as linear dipoles. The same methods were also used to determine the three-dimensional orientation of the emission dipole, which proved to be consistent with the hypothesis of a linear dipole tilted with respect to the rod axis. Moreover, we observe that for high-energy pumping, the excitation transition of the dot-in-rod cannot be approximated by a single linear dipole, contrary to the emission transition.
In the case of light emitting semiconducting polymers, different techniques have been used for the fabrication of electroluminescent devices. Experiments and characterizations have been carried out at different operating voltages and for voltage dependent emission color also combining the processability of organic materials with efficient luminescence displayed by inorganic nanocrystals (NCs). In fact, the experimental perspective to disperse emitting colloidal NCs into polymers has allowed to further engineer hybrid organic-inorganic materials introducing innovative functionalities as for instance photoluminescence conversion capabilities. This has proved of great interest for novel applications such as the fabrication of photonic crystals and, notably, of innovative solar cells showing enhanced efficiency. Here we report on the fabrication of novel active micro-optical elements made by a mixture of rod-shaped inorganic NCs dispersed into poly-dimethylsiloxane.
Magnetic Fe3O4 nanoparticles with average size approximately 11 nm were first oleic acid coated to interact with the meso-porphyrin derivative from CNSL. This procedure produced a novel superparamagnetic fluorescent nanosystem (SFN) linked by van der Waals interactions. This system was characterized by transmission electron microscope, infrared spectroscopy, thermogravimetric analysis, magnetic measurements, UV-Vis absorption, and fluorescence emission measurements. These results showed that SFN has good thermal stability, excellent magnetization, and nanosized dimensions (similar to 13 nm). It exhibited emission peaks at 668 and 725 nm with a maximum emission at 467 nm of excitation wavelength. The type of interaction between porphyrin and magnetic nanoparticles allowed to obtain a material with interesting optical properties which might be used as an imaging agent for contrast in cells as well as heterogeneous photocatalysis.
In this work we propose rod-shaped core/shell CdSe/CdS colloidal nanocrystals as efficient non-classical light sources. These nanoemitters show peculiar features such as pronounced photoluminescence stability and high single-photon emission efficiency at room-temperature, making us envision their possible employment as single-photon sources for quantum communications protocols. © 2013 IEEE.
Authors aimed to provide a magnetic responsiveness to bone-mimicking nano-hydroxyapatite (n-HA). For this purpose, dextran-grafted iron oxide nanoarchitectures (DM) were synthesized by a green-friendly and scalable alkaline co-precipitation method at room temperature and used to functionalize n-HA crystals. Different amounts of DM hybrid structures were added into the nanocomposites (DM/n-HA 1:1, 2:1 and 3:1weight ratio) which were investigated through extensive physicochemical (XRD, ICP, TGA and Zeta-potential), microstructural (TEM and DLS), magnetic (VSM) and biological analyses (MTT proliferation assay). X-ray diffraction patterns have confirmed the n-HA formation in the presence of DM as a co-reagent. Furthermore, the addition of DM during the synthesis does not affect the primary crystallite domains of DM/n-HA nanocomposites. DM/n-HAs have shown a rising of the magnetic moment values by increasing DM content up to 2:1 ratio. However, the magnetic moment value recorded in the DM/n-HA 3:1 do not further increase showing a saturation behaviour. The cytocompatibility of the DM/n-HA was evaluated with respect to the MG63 osteoblast-like cell line. Proliferation assays revealed that viability, carried out in the absence of external magnetic field, was not affected by the amount of DM employed. Interestingly, assays also suggested that the DM/n-HA nanocomposites exhibit a possible shielding effect with respect to the anti-proliferative activity induced by the DM particles alone.
Suitable post-synthesis surface modification of lead-chalcogenide quantum dots (QDs) is crucial to enable their integration in photovoltaic devices. We have developed a solution-phase ligand exchange strategy that exploits arenethiolate anions to replace the pristine oleate ligands on PbS QDs, while preserving the long-term colloidal stability of QDs and allowing their solution-based processability into photoconductive thin-films. Complete QD surface modification is demonstrated by IR spectroscopy analysis, whereas UV-Vis-NIR Absorption Spectroscopy provides quantitative evaluation of stoichiometry and thermodynamic stability of the resulting system. Arenethiolate ligands permit to reduce the inter-particle distance in PbS QD solids, leading to a drastic improvement of the photoinduced charge transport properties. Therefore, smooth dense-packed thin-films of arenethiolate-capped PbS QDs obtained via a single solution-processing step are integrated in heterojunction solar cells: such devices generate remarkable photocurrent densities (14 mA cm(-2)) and overall efficiencies (1.85%), which are outstanding for a single PbS QD layer. Solution-phase surface modification of QDs thus represents an effective intermediate step towards low-cost processing for all-inorganic and hybrid organic/inorganic QD-based photovoltaics.
In this article, the environmentally friendly preparation of "green nanocarriers" based on the combination of natural renewable materials is described. Cardanol (CA), obtained as the major byproduct of the cashew industry, and cholesterol (CH) have been used to encapsulate chlorogenic acids (CQAs), a class of natural phenolic compounds extracted from two different rowanberries (Sorbus Americana and Vaccinium sp.). The chlorogenic acid extracts and cardanol-based vesicular nanodispersions have been characterized, respectively, by ultra-high performance liquid chromatography (UHPLC), transmission electron microscopy (TEM), and dynamic light scattering (DLS). © 2014 American Chemical Society.
Condividi questo sito sui social