Effettua una ricerca
Loredana Capobianco
Ruolo
Professore Associato
Organizzazione
Università del Salento
Dipartimento
Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali
Area Scientifica
Area 05 - Scienze biologiche
Settore Scientifico Disciplinare
BIO/10 - Biochimica
Settore ERC 1° livello
LS - Life sciences
Settore ERC 2° livello
LS4 Physiology, Pathophysiology and Endocrinology: Organ physiology, pathophysiology, endocrinology, metabolism, ageing, tumorigenesis, cardiovascular disease, metabolic syndrome
Settore ERC 3° livello
LS4_5 Metabolism, biological basis of metabolism related disorders
The dicarboxylate carrier is an important member of the mitochondrial carrier family, which catalyzes an electroneutral exchange across the inner mitochondrial membrane of dicarboxylates for inorganic phosphate and certain sulfur-containing compounds. Screening of the Drosophila melanogaster genome revealed the presence of a mitochondrial carrier subfamily constituted by four potential homologs of mammalian and yeast mitochondrial dicarboxylate carriers designated as DmDic1p, DmDic2p, DmDic3p, and DmDic4p. In this paper, we report that DmDIC1 is broadly expressed at comparable levels in all development stages investigated whereas DmDIC3 and DmDIC4 are expressed only in the pupal stage, no transcripts are detectable for DmDIC2. All expressed proteins are localized in mitochondria. The transport activity of DmDic1-3-4 proteins has been investigated by reconstitution of recombinant purified protein into liposomes. DmDic1p is a typical dicarboxylate carrier showing similar substrate specificity and inhibitor sensitivity as mammalian and yeast mitochondrial dicarboxylate carriers. DmDic3p seems to be an atypical dicarboxylate carrier being able to transport only inorganic phosphate and certain sulfur-containing compounds. No transport activity was observed for DmDic4p. The biochemical results have been supported at molecular level by computing the protein structures and by structural alignments. All together these results indicate that D. melanogaster dicarboxylate carriers form a protein subfamily but the modifications in the amino acids sequences are indicative of specialized functions.
A general and effective strategy to identify cDNA encoding for mitochondrial silver eel citrate carrier (CIC) has been developed. In particular using primers directed towards the highly conserved signature motif of the ortholog citrate cDNA sequences, the full-length silver eel cDNA from liver was obtained. This is 1193 bp in length with 5’ and 3’ untranslated regions of 90 and 149 bp, respectively. The open reading frame encodes a mature protein of 297 amino acids, preceded by a presequence of 20 amino acids. Additionally the mature CIC overexpressed in Escherichia coli and reconstituted into phospholipid vesicles showed the same substrate specificity of the native protein previously characterized in silver eel. The tissue distribution of silver eel CIC mRNAs was investigated and transcripts were detected at high levels in swim bladder whereas a weaker signal was found in brain, gill, intestine and liver.
CoA is an essential cofactor that holds a central role in cell metabolism. Although its biosynthetic pathway is conserved across the three domains of life, the subcellular localization of the eukaryotic biosynthetic enzymes and the mechanism behind the cytosolic and mitochondrial CoA pools compartmentalization are still under debate. In humans, the transport of CoA across the inner mitochondrial membrane has been ascribed to two related genes, SLC25A16 and SLC25A42 whereas in D. melanogaster genome only one gene is present, CG4241, phylogenetically closer to SLC25A42. CG4241 encodes two alternatively spliced isoforms, dPCoAC-A and dPCoAC-B. Both isoforms were expressed in Escherichia coli, but only dPCoAC-A was successfully reconstituted into liposomes, where transported dPCoA and, to a lesser extent, ADP and dADP but not CoA, which was a powerful competitive inhibitor. The expression of both isoforms in a Saccharomyces cerevisiae strain lacking the endogenous putative mitochondrial CoA carrier restored the growth on respiratory carbon sources and the mitochondrial levels of CoA. The results reported here and the proposed subcellular localization of some of the enzymes of the fruit fly CoA biosynthetic pathway, suggest that dPCoA may be synthesized and phosphorylated to CoA in the matrix, but it can also be transported by dPCoAC to the cytosol, where it may be phosphorylated to CoA by the monofunctional dPCoA kinase. Thus, dPCoAC may connect the cytosolic and mitochondrial reactions of the CoA biosynthetic pathway without allowing the two CoA pools to get in contact.
Cisplatin, cis-[Pt(NH3)2Cl2], was the first inorganic compound applied in clinics to treat a broad range of malignancies. It is able to bind DNA on the N7 positions of adjacent G/A residues, resulting in the cross-link lesions believed to be responsible for observed antitumor activity. Sometimes N7-metalated purines seem to be characterized by a relevant antitumor activity. This has led us to hypothesize a parallel mechanism of action of platinum drugs, based on free platinated purines, formed after drug administration and incorporated into DNA by DNA polymerases. In order to evaluate this possibility, as a key step to develop new drugs, we performed experiments focused on platinated nucleobases, i.e. [Pt(dien)(N7-G)] and cis-[Pt(NH3)2(py)(N7-G)], dien = diethylenetriamine, py = pyridine, G = 5’-dGTP, cell and mitochondrial uptake and processing. For the first time cell uptake and mobility mechanisms, related to plasmatic cell and/or mitochondrial membrane crossing, has been studied. The results of the present study suggest that nucleotide carriers can be actively implicated in the specific uptake of free cytoplasmic platinum bonded nucleotides. Moreover the possible insertion of metalated nucleobases into nuclear and/or mitochondrial new synthesized DNA/RNA, operated by DNA/RNA polymerases, has been evaluated.
Heme is an essential molecule in many biological processes, such as transport and storage of oxygen and electron transfer, as well as a structural component of hemoproteins. Defects of heme biosynthesis in developing erythroblasts have profound medical implications, as represented by sideroblastic anemia. The synthesis of heme requires the uptake of glycine into the mitochondrial matrix where glycine is condensed with succinyl coenzyme A to yield δ-aminolevulinic acid. Herein we describe the biochemical and molecular characterization of yeast Hem25p and human SLC25A38, providing evidence that they are mitochondrial carriers for glycine. In particular, the hem25Δ mutant manifests a defect in the biosynthesis of δ-aminolevulinic acid and displays reduced levels of downstream heme and mitochondrial cytochromes. The observed defects are rescued by complementation with yeast HEM25 or human SLC25A38 genes. Our results identify new proteins in the heme biosynthetic pathway and demonstrate that Hem25p and its human orthologue SLC25A38 are the main mitochondrial glycine transporters required for heme synthesis, providing definitive evidence of their previously proposed glycine transport function. Furthermore, our work may suggest new therapeutic approaches for the treatment of congenital sideroblastic anemia.
Glycyrrhiza glabra cultivation and harvesting produces substantial quantities of aerial parts as waste. With the aim to prospect an innovative valorization of these byproducts, the aerial parts were harvested in May and October and analyzed for their chemical profile, antioxidant properties, and effects on viability of five cancer cell lines. Pinocembrin was the main constituent. A significant protection of lipid peroxidation was observed with the May total extract (IC50 of 4.2 ± 0.4 μg/mL at 30 min of incubation). The effects on viability of HeLa, MCF-7, MDA-MB-231, Caco-2, and PC3 human cancer cells were investigated. All samples shown a remarkable activity with IC50 values below 25 μg/mL. Samples from plants harvested in May exhibited greater activity than those harvested in October. MCF-7 and HeLa were the most sensitive cells with IC50 in the range 2.73−3.01 and 3.28−5.53 μg/mL, respectively. G. glabra aerial parts represent a good source of valuable products.
Characterizing the structure of membrane proteins (MPs) generally requires extraction from their native environment, most commonly with detergents. Yet, the physicochemical properties of detergent micelles and lipid bilayers differ markedly and could alter the structural organization of MPs, albeit without general rules. Dodecylphosphocholine (DPC) is the most widely used detergent for MP structure determination by NMR, but the physiological relevance of several prominent structures has been questioned, though indirectly, by other biophysical techniques, e.g., functional/thermostability assay (TSA) and molecular dynamics (MD) simulations. Here, we resolve unambiguously this controversy by probing the functional relevance of three different mitochondrial carriers (MCs) in DPC at the atomic level, using an exhaustive set of solution-NMR experiments, complemented by functional/TSA and MD data. Our results provide atomic-level insight into the structure, substrate interaction and dynamics of the detergent−membrane protein complexes and demonstrates cogently that, while high-resolution NMR signals can be obtained for MCs in DPC, they systematically correspond to nonfunctional states .
Cisplatin, cis-diamminedichloroplatinum(II), is one of the most widely used antitumor drugs in cancer chemotherapy, as a critical component against a broad range of malignancies. Platinum anticancer drugs are generally known to target DNA, where they can bind to the N7 of purine bases. Cisplatin, as other bifunctional agents, is able to bind to adjacent purines, resulting in crosslink lesions believed to be responsible for the observed antitumor activity. N7-metalated purines, in some cases, seem to be characterized by a relevant antitumor activity. This has led us to hypothesize a cisplatin parallel mechanism of action: based on free platinated purines formation, directly in tissues, after drug administration. In order to evaluate this possible mechanism, as a key path to develop new drugs, we performed a series of experiments focused on platinated nucleobases cell and mitochondrial uptake and processing. For the first time cell uptake and mobility mechanisms, related to plasmatic cell and/or mitochondrial membrane crossing, has been studied. Moreover the possible insertion of metalated nucleobases into nuclear and/or mitochondrial new synthesized DNA/RNA, operated by DNA/RNA polymerases was evaluated. At this scope model metalated nucleosides/nucleotides, with nitrogen carrier ligands, have been synthesized, isolated and characterized. The possible development of new drugs based on this new rational drug design will be discussed.
The mitochondrial carriers are members of a family of transport proteins that mediate solute transport across the inner mitochondrial membrane. Two isoforms of the glutamate carriers, GC1 and GC2 (encoded by the SLC25A22 and SLC25A18 genes, respectively), have been identified in humans. Two independent mutations in SLC25A22 are associated with severe epileptic encephalopathy. In the present study we show that two genes (CG18347 and CG12201) phylogenetically related to the human GCs encoding genes are present in the D. melanogaster genome. We have functionally characterized the proteins encoded by CG18347 and CG12201, designated as DmGC1p and DmGC2p respectively, by overexpression in Escherichia coli and reconstitution into liposomes. Their transport properties demonstrate that DmGC1p and DmGC2p both catalyze the transport of glutamate across the inner mitochondrial membrane. Computational approaches have been used in order to highlight residues of DmGC1p and DmGC2p involved in substrate binding. Furthermore, gene expression analysis during development and in various adult tissues reveals that CG18347 is ubiquitously expressed in all examined D. melanogaster tissues, while the expression of CG12201 is strongly testis-biased. Finally, we identified mitochondrial glutamate carrier orthologs in 49 eukariotic species in order to attempt the reconstruction of the evolutionary history of the glutamate carrier function. Comparison of the exon/intron structure and other key features of the analyzed orthologs suggest that eukaryotic glutamate carrier genes descend from an intron-rich ancestral gene already present in the common ancestor of lineages that diverged as early as bilateria and radiata.
The citrate carrier (CiC), characteristic of animals, and the dicarboxylate-tricarboxylate carrier (DTC), characteristic of plants and protozoa, belong to the mitochondrial carrier protein family whose members are responsible for the exchange of metabolites, cofactors and nucleotides between the cytoplasm and mitochondrial matrix. Most of the functional data on these transporters come from studies performed with the protein purified from rat, eel yeast and maize mitochondria or recombinant proteins from different sources incorporated into phospholipid vesicles (liposomes). The functional data indicate that CiC is responsible for the efflux of acetyl-CoA from the mitochondria to the cytosol in the form of citrate, the primer for fatty acid, cholesterol synthesis and histone acetylation. Like the CiC the citrate exported by DTC from the mitochondria to the cytosol in exchange for oxaloacetate can be cleaved by citrate lyase to acetyl-CoA and oxaloacetate and used for fatty acid elongation and isoprenoid synthesis. In addition to its role in fatty acid synthesis, CiC is involved in other processes such as gluconeogenesis, insulin secretion, inflammation, and cancer progression, whereas DTC is involved in production of glycerate, nitrogen assimilation, ripening of fruits, ATP synthesis and sustaining of respiratory flux in fruit cells. This review provides an assessment of the current understanding of CiC and DTC structural and biochemical characteristics, underlying the structure–function relationship of these carriers. Furthermore a phylogenetic relationship between CiC and DTC is proposed.
The oxoglutarate carrier (OGC) belongs to the mitochondrial carrier family and plays a key role in important metabolic pathways. Here, site-directed mutagenesis was used to conservatively replace lysine 122 by arginine, in order to investigate new structural rearrangements required for substrate translocation. K122R mutant was kinetically characterized, exhibiting a significant Vmax reduction with respect to the wild-type (WT) OGC, whereas Km value was unaffected, implying that this substitution does not interfere with 2-oxoglutarate binding site. Moreover, K122R mutant was more inhibited by several sulfhydryl reagents with respect to the WT OGC, suggesting that the reactivity of some cysteine residues towards these Cys-specific reagents is increased in this mutant. Different sulfhydryl reagents were employed in transport assays to test the effect of the cysteine modifications on single-cysteine OGC mutants named C184, C221, C224 (constructed in the WT background) and K122R/C184, K122R/C221, K122R/C224 (constructed in the K122R background). Cysteines 221 and 224 were more deeply influenced by some sulfhydryl reagents in the K122R background. Furthermore, the presence of 2-oxoglutarate significantly enhanced the degree of inhibition of K122R/C221, K122R/C224 and C224 activity by the sulfhydryl reagent 2-Aminoethyl methanethiosulfonate hydrobromide (MTSEA), suggesting that cysteines 221 and 224, together with K122, take part to structural rearrangements required for the transition from the c- to the m-state during substrate translocation. Our results are interpreted in the light of the homology model of BtOGC, built by using as a template the X-ray structure of the bovine ADP/ATP carrier isoform 1 (AAC1).
PON 254/Ric. Potenziamento del “Centro Ricerche per la Salute dell’Uomo e dell’Ambiente” Cod. PONa3_00334;Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari (Italy).
E-cadherin is the core protein of the epithelial adherens junction. Through its cytoplasmic domain, E-cadherin interacts with several signaling proteins; among them, - and -catenins mediate the linkof E-cadherin to the actin cytoskeleton. Loss of E-cadherin expression is a crucial step of epithelial-mesenchymal transition (EMT) and is involved in cancer invasion and metastatization. In human tumors,down-regulation of E-cadherin is frequently associated with poor prognosis. Despite the critical roleof E-cadherin in cancer progression, little is known about proteome alterations linked with its down-regulation. To address this point, we investigated proteomics, biophysical and functional changes ofepithelial breast cancer cell lines upon shRNA-mediated stable knockdown of E-cadherin expression(shEcad). shEcad cells showed a distinct proteomic signature including altered expression of enzymes andproteins involved in cytoskeletal dynamic and migration. Moreover, these results suggest that, besidestheir role in mechanical adhesion, loss of E-cadherin expression may contribute to cancer progressionby modifying a complex network of pathways that tightly regulate fundamental processes as oxidativestress, immune evasion and cell metabolism. Altogether, these results extend our knowledge on thecellular modifications associated with E-cadherin down-regulation in breast cancer cells.
Phospholipid biosynthesis exerts an important role in the proliferation of tumor cells; however, the regulation of the proteins involved in this context still remains to be fully evaluated. SLC37A1 protein belongs to a small family of sugar-phosphate/phosphate exchangers. The sequence homology with the bacterial glycerol-3-phosphate transporter (30%) suggests that SLC37A1 might be able to catalyze an exchange of glycerol-3-phosphate against phosphate. Glycerol-3-phosphate, found in different cellular compartments, is a fundamental substrate in phospholipid biosynthesis. In the present study, we demonstrate for the first time that epidermal growth factor (EGF) transactivates SLC37A1 promoter sequence and induces SLC37A1 mRNA, and protein expression through the EGFR/MAPK/ Fos transduction pathway in ER-negative SkBr3 breast cancer cells. These findings were corroborated by comparable results obtained in ER-positive endometrial Ishikawa tumor cells. Interestingly, we also show that SLC37A1 protein localizes in the endoplasmic reticulum, hence supporting its possible involvement in phospholipid biosynthesis. On the basis of our data, the up-regulation of SLC37A1 gene expression should be included among the well-known stimulatory action exerted by EGF in breast cancer cells. In addition, further studies are required to provide evidence concerning the potential role of EGFmediated SLC37A1 induction in breast tumor cells.
The mitochondrial carriers are a family of transport proteins that shuttle metabolites, nucleotides and cofactors across the inner mitochondrial membrane. The genome of Drosophila melanogaster encodes at least 46 members of this family. Only five of these have been characterized, whereas the transport functions of the remainder cannot be assessed with certainty. In the present study, we report the functional identification of two D. melanogaster genes distantly related to the human and yeast thiamine pyrophosphate carrier (TPC) genes as well as the corresponding expression pattern throughout development. Furthermore, the functional characterization of the D. melanogaster mitochondrial thiamine pyrophosphate carrier protein (DmTpc1p) is described. DmTpc1p was over-expressed in bacteria, the purified protein was reconstituted into liposomes, and its transport properties and kinetic parameters were characterized. Reconstituted DmTpc1p transports thiamine pyrophosphate and, to a lesser extent, pyrophosphate, ADP, ATP and other nucleotides. The expression of DmTpc1p in Saccharomyces cerevisiae TPC1 null mutant abolishes the growth defect on fermentable carbon sources. The main role of DmTpc1p is to import thiamine pyrophosphate into mitochondria by exchange with intramitochondrial ATP and ⁄ or ADP.
The mechanisms through which sperm manage their energy metabolism are poorly understood. The present study provides biochemical and morphological evidence that mitochondrial citrate carrier (CIC) is present in ejaculated human sperm and is restricted to the midpiece. The inhibition of CIC with the specific substrate analog 1,2,3-benzenetricarboxylate resulted in the reduction of cholesterol efflux, protein tyrosine phosphorylation, phospho-AKT, phospho-p60src, hyperactivated motility and acrosome reaction, suggesting a role for this mitochondrial carrier in sperm physiology. Furthermore, inhibition of CIC by 1,2,3-benzenetricarboxylate resulted in a reduction of glucose-stimulated insulin secretion and autocrine insulin secretion by sperm. Remarkably, blocking CIC also reduced glucose-6-phosphate dehydrogenase activity, probably in accordance with its regulation on insulin secretion. Capacitation and glucose metabolism were stimulated by glucose as well as citrate, the specific substrate of CIC, implying a similar action because glucose and citrate both induced insulin secretion by sperm. In the present finding, we discovered a new site of action for CIC in the regulation of metabolism, and it may be assumed that CIC works with other factors in the regulation of sperm energy metabolism to sustain capacitation process and acrosome reaction.
The growing understanding of the molecular mechanisms underlying epithelial-to-mesenchymal transition (EMT) may represent a potential source of clinical markers. Despite EMT drivers have not yet emerged as candidate markers in the clinical setting, their association with established clinical markers may improve their specificity and sensitivity. Mass spectrometry-based platforms allow analyzing multiple samples for the expression of EMT candidate markers, and may help to diagnose diseases or monitor treatment efficiently. This review highlights proteomic approaches applied to elucidate the differences between epithelial and mesenchymal tumors and describes how these can be used for target discovery and validation.
The results of the present study suggest that DmTpc1 is actively implicated in the specific uptake of free cytoplasmic Pt bonded nucleotides, and therefore could be linked to the mechanism of action of some platinum-based antitumor drugs. Although DmTpc1 has a low affinity for model [Pt(dien)(N7-5′-dGTP)] and cis-[Pt(NH3)2(py)(N7-5′-dGTP)] compared to dATP it's well known that DNA platination level of few metal atoms per double-stranded molecule may account for the pharmacological activity of platinum based antitumor drugs. This is the first investigation where it has been demonstrated that a mitochondrial carrier is directly involved in the transport of metalated purines related with the cisplatin mechanism of action. Moreover it is shown as a lower hindrance of nucleotide bonded platinum complexes could strongly enhance mitochondrial uptake. Furthermore, a new application of ICP-AES addressed to measure the transport of metalated nucleobases, by using a recombinant protein reconstituted into liposomes, has been here, for the first time, developed and compared with a standard technique such as the liquid scintillation counting.
The accumulation of toxic hydrophobic bile acids in hepatocytes, observed during chronic cholestasis, induces substantial modification in the redox state and in mitochondrial functions. Recent reports have suggested a significant role of impaired lipid metabolism in the progression of chronic cholestasis. In this work we report that changes observed in the expression of the lipogenic enzymes acetyl-CoA carboxylase and fatty acid synthase were associated with a decrease in the activity of citrate carrier (CIC), a protein of the inner mitochondrial membrane closely related to hepatic lipogenesis. We also verified that the impairment of citrate transport was dependent on modification of the phospholipid composition of the mitochondrial membrane and on cardiolipin oxidation. Silybin, an extract of silymarin with antioxidant and anti-inflammatory properties, prevented mitochondrial reactive oxygen species (ROS) production, cardiolipin oxidation, and CIC failure in cirrhotic livers but did not affect the expression of lipogenic enzymes. Moreover, supplementation of silybin was also associated with mitochondrial biogenesis. In conclusion, we demonstrate that chronic cholestasis induces cardiolipin oxidation that in turn impairs mitochondrial function and further promotes ROS production. The capacity of silybin to limit mitochondrial failure is part of its hepatoprotective property.
Condividi questo sito sui social