Effettua una ricerca
Antonio Boccaccio
Ruolo
Ricercatore a tempo determinato - tipo B
Organizzazione
Politecnico di Bari
Dipartimento
Dipartimento di Meccanica, Matematica e Management
Area Scientifica
Area 09 - Ingegneria industriale e dell'informazione
Settore Scientifico Disciplinare
ING-IND/15 - Disegno e Metodi dell'Ingegneria Industriale
Settore ERC 1° livello
PE - Physical sciences and engineering
Settore ERC 2° livello
PE8 Products and Processes Engineering: Product design, process design and control, construction methods, civil engineering, energy processes, material engineering
Settore ERC 3° livello
PE8_7 - Mechanical and manufacturing engineering (shaping, mounting, joining, separation)
The purpose of this study is to compare the shear bond strength of different resin bases and artificial teeth made of ceramic or acrylic resin materials and whether tooth-base interface may be treated with aluminium oxide sandblasting. Experimental measurements were carried on 80 specimens consisting of a cylinder of acrylic resin into which a single tooth is inserted. An ad hoc metallic frame was realized to measure the shear bond strength at the tooth-base interface. A complete factorial plan was designed and a three-way ANalysis Of VAriance (ANOVA) was carried out to investigate if shear bond strength is affected by the following factors: (i) tooth material (ceramic or resin); (ii) base material (self-curing or thermal-curing resin); (iii) presence or absence of aluminium oxide sandblasting treatment at the tooth-base interface. Tukey post hoc test was also conducted to evaluate any statistically significant difference between shear strength values measured for the differently prepared samples. It was found from ANOVA that the above mentioned factors all affect shear strength. Furthermore, post hoc analysis indicated that there are statistically significant differences (p-value=0.000) between measured shear strength values for: (i) teeth made of ceramic material vs. teeth made of acrylic resin material; (ii) bases made of self-curing resin vs. thermalcuring resin; (iii) specimens treated with aluminium oxide sandblasting vs. untreated specimens. Shear strength values measured for acrylic resin teeth were on average 70% higher than those measured for ceramic teeth. The shear bond strength was maximized by preparing samples with thermal-curing resin bases and resin teeth submitted to aluminium oxide sandblasting.
In the last few decades Experimental Mechanics, helped by advanced technologies to gather 3-D spatial information in non-transparent media, has evolved into a very general tool. It has become possible to observe the internal volume of engineering materials and in the area of biomechanics living internal tissues. This paper contains a brief review of Continuum Mechanics mathematical models that are available to formulate problems in 3-D including large deformations. The extension of the experimental methods that measure displacements in 2-D to 3-D is presented. Two important cases are considered: a) use of deterministic signals, b) use of random signals. In order to separate the complexity of the subject of 3-D analysis from the difficulties that arise from the use of random signals, the connection between mathematical models and their experimental determination is presented utilizing deterministic signals. The extension of the use of random signals to the determination of displacements in 2-D to 3-D is outlined. A new method to extract displacement information from random signals is developed and an example of application is provided. Two methods to extract displacement information in 3-D, the classical method based on displacement projections and discrete image correlation (DIC) based on following gradients of intensities are compared. There are many complex steps involved in data processing aside the basic approach, this circumstance makes difficult a comparison between the two methods, however it is possible to conclude that the results are in fair agreement
The zona pellucida (ZP) is a specialized extracellular matrix surrounding the developing oocyte. This thick matrix consists of various types of glycoprotein that play different roles in the fertilization process. Nowadays, several techniques are available for assessing ZP’s mechanical response. The basic assumption behind these methods is that the ZP behaves like an elastic body: hence, dissipative forces are neglected and Young’s modulus remains unaffected by probe dynamics. However, dissipative forces are strongly regulated by the slippage of ZP chains past one another while reaction forces related to elastic deformations (driven by the ability of each chain to stretch) depend on the ZP structure (i.e. number of cross-links and distances between knots). Although viscous reaction forces generated by the ZP are one of the main factors regulating sperm transit, their peculiar behaviour along the ZP structure remains poorly understood and rarely investigated. In order to overcome this limitation, a novel visco-hyperelastic model describing the porcine ZP reaction forces generated by nanoindentations at different probe rates is developed and verified in this study. Visco-hyperelastic parameters of porcine ZP membranes are determined by means of a hybrid characterization framework combining atomic force microscopy nanoindentation measurements, nonlinear finite-element analysis and nonlinear optimization. Remarkably, it is possible to separate the contributions of hyperelastic and viscous terms to ZP mechanical response and evaluate the error made in the determination of ZP mechanical properties if viscous effects were not considered.
In this study a multi-scale mechano-regulation model was developed in order to investigate the mechanobiology of trabecular fracture healing in vertebral bodies. Amacro-scale finite element model of the spinal segment L3–L4–L5, including a mild wedge fracture in the body of the L4 vertebra, was used to determine the boundary conditions acting on a micro-scale finite element model simulating a portion of fractured trabecular bone. The micro-scale model, in turn, was utilized to predict the local patterns of tissue differentiation within the fracture gap and then how the equivalent mechanical properties of the macro-scale model change with time. The patterns of tissue differentiation predicted by the model appeared consistent with those observed in vivo. Bone formation occurred primarily through endochondral ossification.New woven bone was predicted to occupy the majority of the space within the fracture site approximately 7–8 weeks after the fracture event. Remodeling of cancellous bone architecture was then predicted, with complete new trabeculae forming due to bridging of the microcallus between the remnant trabeculae.
Contouring of surfaces covers both metrology measurements and determination of displacements. There are a variety of scientific methods and corresponding devices used in contouring problems. Optical methods of contouring (OMC) have been proven to compete with the high precision and accuracy of Coordinate Measurement Machines (CMM). A general model of moiré contouring was recently developed by C.A. Sciammarella and his collaborators. The model integrates concepts of projective geometry and differential geometry of surfaces and utilizes symmetric projectors to reproduce the condition of projection from infinity. For specimens with dimensions ranging from few mm to more than 1 m, the measuring system and software provided standard deviations of the measured values that can reach 1/500 of the theoretical sensitivity defined by the pitch of the utilized grating. This paper will discuss the most recent trends in the optical contouring of surfaces focusing in particular on how to extend the general model of moiré contouring to the measurement of the three-dimensional displacement field of objects of arbitrary shape.
Nanoindentation has recently emerged as a powerful tool for measuring nano- and microscale mechanical properties in tissues and other biomaterials. This technique has been used to measure the mechanical properties of microstructural features in cells, biopolymer networks, and complex biomaterials. Despite the wide use of the nanoindentation, the residual stress effect in the determination of soft samples elastic properties is still poorly explored. By using parametric finite element analysis and atomic force spectroscopy, we determined the relationships between residual stress and indenter geometry and how it can affect the structural response of polymeric spherical shells flattened on a hard surface.
Condividi questo sito sui social