Effettua una ricerca
Giovanni Stallone
Ruolo
Professore Associato
Organizzazione
Università degli Studi di Foggia
Dipartimento
Dipartimento di Scienze Mediche e Chirurgiche
Area Scientifica
Area 06 - Scienze mediche
Settore Scientifico Disciplinare
MED/14 - Nefrologia
Settore ERC 1° livello
LS - Life sciences
Settore ERC 2° livello
LS6 Immunity and Infection: The immune system and related disorders, infectious agents and diseases, prevention and treatment of infection
Settore ERC 3° livello
LS6_1 Innate immunity and inflammation
Hypertension is common and occurs in the majority of autosomal dominant polycystic kidney disease (ADPKD) patients prior to loss of kidney function. Hypertension relates to progressive kidney enlargement, and is a significant independent risk factor for progression to end-stage renal disease. The pathogenesis of hypertension in ADPKD is complex and depends on many factors that influence each other. High expression of PKD1 and PKD2 genes is present in the cilia of tubular epithelial cells, in endothelial cells and in vascular smooth muscle cells. Decreased or absent polycystin-1 or -2 expression is associated with abnormal vascular structure and function. PKD1/PKD2 deficiency results in reduced nitric oxide levels, altered endothelial response to shear stress with attenuation in vascular relaxation. Activation of the renin-angiotensin-aldosterone system occurs in ADPKD due to decreased nitric oxide production as well as bilateral cyst expansion and intra-renal ischemia. With increasing cyst size, further activation of the renin-angiotensin-aldosterone system occurs, blood pressure increases and a vicious cycle ensues with enhanced cyst growth and hypertension ultimately leading to end-stage renal disease. Inhibition of the angiotensin-aldosterone system is possible with angiotensin-converting enzyme inhibitors and seems to be the first-line treatment for hypertension in these subjects. As suggested by the HALT-PKD study, an aggressive blood pressure control is safe and recommended and is associated with preservation of kidney function and a reduction in total kidney volume over time. A collaborative multidisciplinary approach between nephrologists and cardiologists is necessary for the monitoring of kidney and heart complications.
The central issue in organ transplantation remains suppression of allograft rejection. Thus, the development of immunosuppressive drugs has been the key to successful allograft function. The increased immunosuppressive efficiency obtained in the last two decades in kidney transplantation dramatically reduced the incidence of acute rejection. However, the inevitable trade-off was an increased rate of post-transplant infections and malignancies. Since the incidence of cancer in immunosuppressed transplant recipients becomes greater over time, and the introduction of new immunosuppressive strategies are expected to extend significantly allograft survival, the problem might grow exponentially in the near future. Thus, cancer is becoming a major cause of morbidity and mortality in patients otherwise successfully treated by organ transplantation. There are at least four distinct areas requiring consideration, which have a potentially serious impact on recipient outcome after transplantation: (i) the risk of transmitting a malignancy to the recipient within the donor organ; (ii) the problems of previously diagnosed and treated malignancy in the recipient; (iii) the prevention of de novo post-transplant malignant diseases and (iv) the management of these complex and often life-threatening clinical problems. In this scenario, the direct and indirect oncogenic potential of immunosuppressive therapy should be always carefully considered.
The mammalian target of rapamycin inhibitors (mTOR-I), drugs widely used in transplant medicine and oncology, exert their function by inhibiting a serine/threonine kinase with a pivotal role in cellular metabolism and in a wide range of eukaryotic biological/cellular functions and signaling networks. Additionally, as largely described, the inhibition of mTOR has a major impact on cellular metabolism by stimulating synthesis of proteins and lipids, inhibiting catabolic processes, such as lysosome biogenesis and autophagy, and controlling cell survival, cytoskeleton organization, lipogenesis, and gluconeogenesis. All these biological functions are essential to guarantee body homeostasis and survival. Therefore, it is necessary for clinicians and researchers to better understand this complex pathway to ameliorate patients' treatment empathizing therapeutic effects to minimize/avoid toxicities and to propose new valuable research strategies.The aim of this article has been to underline the complexity of the mTOR pathway and to review the recent literature describing the consequences of its inhibition on several cellular functions including (a) protein synthesis, (b) cell cycle,
The mammalian target of rapamycin (mTOR), a cytoplasmic serine/threonine kinase, represents a key biologic "switch" modulating cell metabolisms in response to environmental signals and is now recognized as a central regulator of the immune system. There is an increasing body of evidence supporting the hypothesis that mTOR inhibitors exhibit several biological properties in addition to immunosuppression, including anti-neoplastic effects, cardio-protective activities, and an array of immunomodulatory actions facilitating the development of an operational graft tolerance. The biological mechanisms explaining how mTOR inhibition can enable a tolerogenic state are still largely unclear. The induction of transplant tolerance might at the same time decrease rejection rate and minimize immunosuppression-related side effects, leading to an improvement in long-term graft outcome. In this scenario, T cell immunoregulation has been defined as the hallmark of peripheral tolerance. Two main immunologic cell populations have been reported to play a central role in this setting: regulatory T cells (Tregs) and dendritic cells (DCs). In this review we focus on mTOR inhibitors effects on Treg and DCs differentiation, activation, and function in the transplantation setting.
Primary hyperoxaluria (PH) is a rare autosomal recessive disease commonly arising in childhood and presenting with nephrolithiasis, nephrocalcinosis and/or chronic renal failure. Three genes are currently known as responsible: alanine-glyoxylate aminotransferase (AGXT, PH type 1), glyoxylate reductase/hydroxypyruvate reductase (GRHPR, PH type 2), and 4-hydroxy-2-oxoglutarate aldolase (HOGA1, PH type 3). In our Centre, at the end of 2014 molecular diagnosis of PH1 had been performed in 80 patients, while one patient received a PH2 diagnosis.
Condividi questo sito sui social