Effettua una ricerca
Gabriele Papadia
Ruolo
Ricercatore
Organizzazione
Università del Salento
Dipartimento
Dipartimento di Ingegneria dell'Innovazione
Area Scientifica
Area 09 - Ingegneria industriale e dell'informazione
Settore Scientifico Disciplinare
ING-IND/16 - Tecnologie e Sistemi di Lavorazione
Settore ERC 1° livello
Non Disponibile
Settore ERC 2° livello
Non Disponibile
Settore ERC 3° livello
Non Disponibile
Bending can be considered one of easier sheet metal forming processes. In fact, it represents one of the basic variants of applied deformations to metal blanks. However, the numerous research contributions dedicated to sheet metal bending that have been published over the past decade and the constant stream of announcements by R&D departments of machine constructors are strong indications that not all research challenges related to sheet metal bending have been done. This paper reports the developed activity carried out to design a bending testing rig characterized by: a working horizontal axis, a maximum bending length equal to 200 mm, a maximum applicable force equal to 80 kN. A partitioned blankholder has also been designed to allow bending operations on tailored blanks. Moreover, a Graphical User Interface hollows to set up the process parameters and the acquisition of testing data (Temperature and/or Force as function of the process time or punch stroke). CAE tools application had a strategic role to develop the best layout and to find the optimum solutions for the process variables tuning. CAE techniques have allowed to investigate and verify different layout solutions both for the bending process and the structural components of the tooling.
In order to perform a successful sheet metal forming operation and to avoid shape deviations and tearing and wrinkling defects, process and material variables, such as tools geometry, blankholder force, friction, blank shape, sheet thickness and material properties, should be optimized. One of the main parameters which must be defined at the beginning of any sheet metal forming process design is the initial blank shape and its main dimensions [1]. In this paper, the authors’ attention is focused on a non-conventional sheet HDD process for which optimal blank shape and dimensions are not fully explored yet [2]. It will be demonstrated that, when the traditional One Step finite element method calculation, realised through the implicit code, is applied to HDD, the process shows various limits. In fact, while the One Step analysis is able to predict the optimal initial blank for the traditional Deep Drawing (DD) process, the same blank could not be the optimal one in a HDD process. The goal of this paper is to develop a methodology by which, with the aid of optimization algorithms, it will be possible for the user to define the best shape and dimensions for the initial blank in HDD processes, even when starting from the blank obtained by a One Step analysis.
Blank shape is one of the most important parameters of sheet metal stamping. In fact it can directly affect the forming quality of parts and it has to be taken in account in sheet hydroforming design. Reasonable blank shape not only can reduce materials and production cost but, also, it can improve the strain distribution of the material and product quality in the hydroforming process. However, it is not easy to find an optimal blank shape because of complexity of deformation behavior and presence of many process parameters like die radius, punch radius, punch speed, blank holder force and friction. In fact, they affect the result of the process i.e. tearing, wrinkling, springback and surface conditions such as earing. Even a slight variation in one of these parameters can result in defects. This paper reports numerical and experimental correlation for axis symmetrical hydroformed component using initial blank with different shape and size. Experimental tests have been carried out through the hydroforming cell tooling, designed by the authors thanks to a research project, characterized by a variable upper blankholder load of eight different hydraulic actuators. Two different initial blank shapes, square and circular, of same material and thickness have been used.
Warm bulging test is a particular kind of sheet hydroforming. The presence of a warm fluid requires a proper tooling design in order to achieve the benefits related to these particular forming conditions, minimizing blank ruptures and wrinkles presence. The fluid is injected in a properly designed chamber and it produces a sheet bulging deformation. Also the tooling and the sheet are warmed in order to maintain a constant process temperature. In this working conditions, it is necessary to accurately design the tooling layout taking into account: interaction forces, fluid volume, vision system in order to record the deformation conditions and safety systems in order to prevent damage to the workers caused by the warm fluid possible leakage (approximately 200° ÷ 300° C). CAE techniques have a relevant role in order to define proper process parameters such as: sheet thickness, bulging height, fluid pressure. An explicit solver has been used to calculate the forces distribution, developed during the warm sheet bulging, and the needed fluid volume. The obtained values have been used as input data in the structural tooling validation. The authors have designed a warm bulging test layout. The sheet deformation, etched with a grid, is detected through CCD cameras. Diffuse lights, a thermometer and a laser beam adopted to detect the dome height complete the tooling control system.
Most of the aeronautic skin parts are made through stretch forming of aluminium or titanium sheet metals over rigid fixed dies. In the aerospace industry, the stretch forming of aluminium or titanium sheets is widely used to produce aircraft skin, such as blended wing body sections, fuselage sections and nacelle skins. As the demand for more efficient and economical commercial transport increases, the requirements for reduced weight and improved performance become greater. In this work explicit FEM simulations have been used to analyze the forming process of an aeronautical engine fairing in order to numerically compare: tangential stretch forming, extensively used in the aerospace industry and single action drawing processes effects on the studied component. Titanium alloys have their advantages and disadvantages, and two important tasks are the understanding of the behaviour of the alloys and the matching among particular alloys and processes in order to maximize structural and operational efficiency. Equally important it is the ability to develop a fabrication practice that does not severely degrade material properties and that can be implemented at reasonable cost.
Rubber pad forming (RPF) is a novel method for sheet metal forming that has been increasingly used for: automotive, energy, electronic and aeronautic applications. Compared with the conventional forming processes, this method only requires one rigid die, according to the shape of the part, and the other tool is replaced by a rubber pad. This method can greatly improve the formability of the blank because the contact surface between the rigid die and the rubber pad is flexible. By this way the rubber pad forming enables the production of sheet metal parts with complex contours and bends. Furthermore, the rubber pad forming process is characterized by a low cost of the die because only one rigid die is required. The conventional way to develop rubber pad forming processes of metallic components requires a burdensome trial-and-error process for setting-up the technology, whose success chiefly depends on operator’s skill and experience. In the aeronautical field, where the parts are produced in small series, a too lengthy and costly development phase cannot be accepted. Moreover, the small number of components does not justify large investments in tooling. For these reasons, it is necessary that, during the conceptual design, possible technological troubles are preliminarily faced by means of numerical simulation. In this study, the rubber forming process of an aluminum alloy aeronautic component has been explored with numerical simulations and the significant parameters associated with this process have been investigated. Several effects, depending on: stamping strategy, component geometry and rubber pad characterization have been taken into account. The process analysis has been carried out thanks to an extensive use of a commercially finite element (FE) package useful for an appropriate set-up of the process model. These investigations have shown the effectiveness of simulations in process design and highlighted the critical parameters which require necessary adjustments before physical tests.
In the typical scenario of a helicopter crash, impact with the ground is preceded by a substantially vertical drop, with the result that a seated occupant of a helicopter experiences high spinal loads and pelvic deceleration during such crash due to the sudden arresting of vertical downward motion. It has long been recognized that spinal injuries to occupants of helicopters in such crash scenario can be minimized by seat arrangements which limit the deceleration to which the seated occupant is subjected, relative to the helicopter, to a predetermined maximum, by allowing downward movement of the seated occupant relative to the helicopter, at the time of impact with the ground, under a restraining force which, over a limited range of such movement, is limited to a predetermined maximum. In practice, significant benefits, in the way of reduced injuries and reduced seriousness of injuries, can be afforded in this way in such crash situations even where the extent of such controlled vertical movement permitted by the crashworthy seat arrangement is quite limited. Important increase of accident safety is reached with the installation of crashworthy shock absorbers on the main landing gear, but this solution is mostly feasible on military helicopters with long fixed landing gear. Seats can then give high contribution to survivability. Commonly, an energy absorber is a constant load device, if one excludes an initial elastic part of the load-stroke curve. On helicopter seats, this behavior is obtained by plastic deformation of a metal component or scraping of material. In the present work the authors have studied three absorption systems, which differ in relation to their shape, their working conditions and their constructive materials. All the combinations have been analyzed for applications in VIP helicopter seats.
Nowadays the main target in the automotive field is the realization of lightweight and safe components. In this way it is possible to reduce costs and improve fuel consumption and, at the same time, enhance passenger safety. The use of tailored blanks has increased considerably in the automotive industry. Tailored blanks are a combination of different thicknesses or different materials, obtained by welding together two or more blanks, used in particular in car body panels. A new requirement in the automotive sector is the application of aluminum tailored blanks. The main target of this paper is the development of accurate numerical models for bending tailored blanks made from thin aluminum sheets, joined by laser welding, without filler metal. The FE bending simulations have been carried out using an explicit solver. The accuracy of the numerical models has been estimated and improved through a comparison with the results from an experimental study. The experimental tests have been performed using bending testing equipment, designed and developed by the authors. Three different bending radii have been tested. Tailored blanks, used as specimens, have been made by laser welding of thin A16061 sheets. The considered outputs, used for the numerical-experimental comparison, are the punch force and the bending angle. The experimental results have been compared with the numerical ones in order to verify the accuracy of the FE model related to thickness and radius variations
Springback is a really troublesome effect in sheet metal forming processes. In fact changes in geometry after springback are a big and costly problem in the automotive industry. In this paper the authors want to analyse the springback phenomenon experimentally in sheet metal hydroforming. Compared with conventional deep drawing, sheet hydroforming technology has many remarkable advantages, such as a higher drawing ratio, better surface quality, less springback, better dimensional freezing and capability to manufacture complicated shapes. The springback phenomenon has been extensively analysed in deep drawing processes but there are not many works in the literature about springback in sheet metal hydroforming. In order to study it, the authors have performed an accurate measuring phase on the chosen test cases through a coordinate measuring machine and the obtained measurements have been utilised for the determination of springback parameters, taking into account the method proposed by Makinouchi et al. The authors have focused their attention on the possibility of adopting a modified Makinouchi et al. approach in order to measure the springback of the large size considered test cases. Through the implemented methodology it has been possible to calculate the values of the springback parameters. The obtained results correspond to the observed experimental deformations. Analysing the springback parameter values of the different combinations investigated experimentally, the authors have also studied the pre-bulging influence on the springback amount.
The use of lightweight alloy offers significant potential to improve product performances. However, the application of formed lightweight alloy components in critical structures is restricted due to this material’s low formability at room temperature and lack of knowledge for processing lightweight alloys at elevated temperature. Warm forming is becoming of great interest in order to increase the formability of these materials and many conventional processes are adapted including the temperature as a new parameter. In addition to this option, warm hydroforming technology for the lightweight materials is currently emerging to achieve reduced number of manufacturing steps and part consolidation. The warm hydroforming process makes use of the improved formability at elevated temperature and it also utilizes the fluid to transport the forming action as well as heat. In the present work, the authors have studied the warm hydroforming process using two different numerical approaches in order to simulate it. The first software is traditionally used in metal stamping simulations (also warm and hot) unlike the second. The analyzed material is an Al 6061 alloy 2,03 mm thick. Process responses such as: bulge height, thickness reduction and strain distribution have been evaluated different temperature levels (room temperature, equal to 23°C, 100°C and 200 °C). The obtained results have been used to study the accuracy of the second software in sheet warm hydroforming simulation. The authors have also defined the more reliable numerical environment in order to develop material damage models in warm forming conditions.
Fracturing by ductile damage occurs quite naturally in metal forming process due to the development of microcracks associated with large straining or due to plastic instabilities associated with material behavior and boundary conditions. Metal forming processes generally introduce a certain amount of damage in the material being formed. Predictions of the damage formation and growth in a series of forming steps may assist in optimizing the individual operations and their order. This is particularly true for operations such as cutting and blanking, which rely on the nucleation of damage and cracks in order to separate material. In this work numerical simulation of the blanking process, using Deform 2D, taking in account the damage, has been performed. In order to evaluate the accuracy of the numerical solution, experimental test have been performed. Furthermore a numerical experimental correlation has been carried out
Material behaviour description frequently used in commercial codes may not be adequate to simulate real forming processes. One of the reasons is the fact that they rarely include the modeling of internal damage of material. This is a decisive feature in order to be able to predict defective parts in processes like forging or to describe processes in which fracture is a part of the process itself as in sheet blanking or metal cutting. In large deformation of metals, when plastic deformation reaches a threshold level, which may depend on the loading, the fatigue limit and the ultimate stress, a ductile damage process may occur concomitantly with the plastic deformation due to the nucleation, growth and coalescence of micro-voids. Although damage and plastic deformation are two distinct dissipative processes, they influence each other. In this paper a numerical benchmark of the uniaxial tensile tests, for aluminium alloy, has been performed using LS-Dyna and Deform 2D without damage. Then, a numerical uniaxial tensile tests has been studied using a coupled model of elasto-plasticity and ductile damage implemented in LS-Dyna. Experimental material property present in literature has been used.
The HDD process performance and the quality of the formed parts can be influenced by many process variables, such as: fluid pressure, blankholder force, pre-bulging pressure, friction and punch speed [1]. Many studies report how pre-bulging characterization may be done in accordance with the fluid pressure variation [2] or with the maximum bulge height [3][4] value. In this paper, the authors use the maximum bulge height to characterize pre-bulging levels influence on the process feasibility. The effects of three different pre-bulging levels as well as the traditional geometric and process parameters on a specific component characterized by an inverse drawn shape have been analyzed. In the experimental phase, for each considered process condition the Thickness Reduction (TR) has been detected on the formed component in sixteen different points of interest, to verify numerical and experimental correlation. The good accuracy shown by the numerical model allowed to develop an appropriate numerical campaign to obtain an ANOVA analysis to evaluate the pre-bulging heights influence on TR distribution. The obtained results have shown that the pre-bulging height influences the TR distribution significantly but in a less way than punch radius and blankholder forces profile.
Ecological awareness and economic analysis force industry to decrease the weight of transportation vehicles and to achieve a higher product quality with a reduction of production costs. Lightweight constructions made out of Tailored Blanks (TBs) and advanced manufacturing technologies, like sheet metal Hydromechanical Deep Drawing (HDD), help to reach these goals. From this point of view, HDD techniques have been largely accepted by the industry for the production of components characterized by: complex shapes, good surface quality and small residual stress. In this work, starting from previous studies of the same authors about hydroformed components with a redrawing area, an original approach based on Thickness Percentage Reduction (TPR) distribution has been implemented to design a particular TBs for HDD applications. Numerical and experimental results about the studied test case have been allowed the verification of their correlation as well as the necessary reliability of the implemented process simulation methodology.
Sheet metal hydroforming has gained increasing interest during last years, especially as application in the manufacturing of some components for: automotive, aerospace and electrical appliances for niche productions. Different studies have been also done to determine the optimal forming parameters making an extensive use of FEA. In the hydroforming process a blank sheet metal is formed through the action of a fluid and a punch. It forces the sheet into a die, which contains a compressed fluid. Many studies have been focused on the analysis of process and geometric parameters influence about the hydroforming process of a single product with main dimensions till to 100 mm. In this paper the authors describe the results of an experimental activity developed on two different large sized products obtained through sheet metal hydroforming. Different geometric and process parameters have been taken into account during the testing phase to study, in particular, the punch radius influence on the process feasibility. An ANOVA analysis has been implemented to study the influence of geometrical and process parameters on the maximum hydroforming depth. Through this work it has been possible to verify that in the hydroforming process of large size products geometry and, in particular, punch radius, are some of the main factors that influences the feasibility of the products. Different considerations can be made about the effects of the blankholder force and the fluid pressure on the maximum hydroforming depth. As further developments, the authors would perform a numerical study in order to enlarge the knowledge of the process design space to other possible values of the punch radius.
The NESSiE Collaboration has been setup to undertake a conclusive experiment to clarify the muon- neutrino disappearance measurements at short baselines in order to put severe constraints to models with more than the three-standard neutrinos. To this aim the current FNAL-Booster neutrino beam for a Short-Baseline exper- iment was carefully evaluated by considering the use of magnetic spectrometers at two sites, near and far ones.
Sheet hydroforming has gained increasing interest during the last years, especially as application in the manufacturing of some components for automotive, aerospace, and electrical appliances[1,2]. Many parameters influence the process of sheet hydroforming, one of them is the pre-bulging[3]. Different studies have been also done to determine the optimal forming parameters through FEA[4,5]. In the case of sheet hydromechanical forming process the blank is first placed on the lower die (a fluid chamber combined with draw ring) and then, after sealing the blank between blank holder and draw ring, punch progresses to deform the blank[6]. Pressure of the fluid chamber is also increased simultaneously with the punch progression[7]. In this paper, the pre-bulging effect on active hydromechanical deep drawing process has been investigated experimentally and numerically. Pre-bulging includes two parameters: pre-bulging height and pre-bulging pressure, which influence the forming process significantly[3]. Numerical simulations and experimental tests were carried out for a given shape to investigate the pre-bulging effect on the maximum hydroforming depth. During this activity, the authors have verified that the low numerical – experimental accuracy detected it was caused also by the simulation of the pre-bulging phase. The authors have analyzed the problem to define a correct procedure to simulate the pre-bulging phase. From this point of view, nine different levels of pre-bulging (taking into account the level equal to zero also) have been tested to experimentally calculate the Thickness Percentage Reduction (TPR) at the maximum pre-bulging height. For each level, the experiment has been conducted two times for a total number of eighteen experiments. The experimental TPR values have been compared with the numerical ones reaching a good accuracy only in the case of pre-bulging height greater than forty millimeters. The experimental activity has given a valid contribution to improve the simulation models reliability and to obtain useful information on the process itself. The effects of pre-bulging on the process performance are also discussed.
Finite element analysis (FEA) is a powerful tool to evaluate the formability of stamping parts during process and die design development procedures. However, in order to achieve good product quality and process reliability, FEA application has to be performed many times exploring different process parameters combinations. Meanwhile, it is very difficult to perform an exhaustive process design definition when many parameters play a fundamental role to define such a complex problem. So, under the needs of reduction in: design time, development cost and parts weight, there is an urgent need to develop and apply more efficient methods in order to improve the current design procedures. For a generic component it is clear how its shape, among several parameters, has a direct influence on its feasibility. Starting from this assumption, the authors have developed a new approach grouping components upon their shapes analyzing component formability within a given “component family”. Nowadays, it exists only a process designer “sensitivity” that produces a ranking upon shape/feasibility ratio. Having as reference industrial test cases, the authors have defined appropriate shape parameters in order to have dimensionless coefficients representative for the given geometries. In particular, the components have been classified using a parameters set defining similarity families: related to geometrical aspects and to constitutive material. From the geometrical point of view the following parameters have been defined: family name, shape factor, punch radius-thickness ratio, die radius-thickness ratio, while for the constitutive material a code has been defined. FEA has been extensively used in order to: define, investigate and validate each shape parameter with a proper comparison to the macro feasibility of the chosen component geometry. The feasibility configuration definition, for a given shape, has been made through an appropriate study of the influence of each process variable on the properly process performances.
The increasing application of numerical simulation in metal forming field has helped engineers to solve problems one after another to manufacture a qualified formed product reducing the required time [1]. Accurate simulation results are fundamental for the tooling and the product designs. The wide application of numerical simulation is encouraging the development of highly accurate simulation procedures to meet industrial requirements. Many factors can influence the final simulation results and many studies have been carried out about materials [2], yield criteria [3] and plastic deformation [4,5], process parameters [6] and their optimization. In order to develop a reliable hydromechanical deep drawing (HDD) numerical model the authors have been worked out specific activities based on the evaluation of the effective stiffness of the blankholder structure [7]. In this paper after an appropriate tuning phase of the blankholder force distribution, the experimental activity has been taken into account to improve the accuracy of the numerical model. In the first phase, the effective capability of the blankholder structure to transfer the applied load given by hydraulic actuators to the blank has been explored. This phase ended with the definition of an appropriate subdivision of the blankholder active surface in order to take into account the effective pressure map obtained for the given loads configuration. In the second phase the numerical results obtained with the developed subdivision have been compared with the experimental data of the studied model. The numerical model has been then improved, finding the best solution for the blankholder force distribution.
Condividi questo sito sui social