Effettua una ricerca
Luigi Palmieri
Ruolo
Professore Ordinario
Organizzazione
Università degli Studi di Bari Aldo Moro
Dipartimento
DIPARTIMENTO DI BIOSCIENZE, BIOTECNOLOGIE E BIOFARMACEUTICA
Area Scientifica
AREA 05 - Scienze biologiche
Settore Scientifico Disciplinare
BIO/10 - Biochimica
Settore ERC 1° livello
Non Disponibile
Settore ERC 2° livello
Non Disponibile
Settore ERC 3° livello
Non Disponibile
Background: Agenesis of corpus callosum has been associated with several defects of the mitochondrial respiratory chain and the citric acid cycle. We now report the results of the biochemical and molecular studies of a patient with severe neurodevelopmental disease manifesting by agenesis of corpus callosum and optic nerve hypoplasia. Methods and results: A mitochondrial disease was suspected in this patient based on the prominent excretion of 2-hydroxyglutaric acid and Krebs cycle intermediates in urine and the finding of increased reactive oxygen species content and decreased mitochondrial membrane potential in her fibroblasts. Whole exome sequencing disclosed compound heterozygosity for two pathogenic variants in the SLC25A1 gene, encoding the mitochondrial citrate transporter. These variants, G130D and R282H, segregated in the family and were extremely rare in controls. The mutated residues were highly conserved throughout evolution and in silico modeling investigations indicated that the mutations would have a deleterious effect on protein function, affecting either substrate binding to the transporter or its translocation mechanism. These predictions were validated by the observation that a yeast strain harbouring the mutations at equivalent positions in the orthologous protein exhibited a growth defect under stress conditions and by the loss of activity of citrate transport by the mutated proteins reconstituted into liposomes. Conclusions: We report for the first time a patient with a mitochondrial citrate carrier deficiency. Our data support a role for citric acid cycle defects in agenesis of corpus callosum as already reported in patients with aconitase or fumarate hydratase deficiency.
Autism is a severe developmental disorder, whose pathogenetic underpinnings are still largely unknown. Temporocortical gray matter from six matched patient-control pairs was used to perform post-mortem biochemical and genetic studies of the mitochondrial aspartate/glutamate carrier (AGC), which participates in the aspartate/malate reduced nicotinamide adenine dinucleotide shuttle and is physiologically activated by calcium (Ca2+). AGC transport rates were significantly higher in tissue homogenates from all six patients, including those with no history of seizures and with normal electroencephalograms prior to death. This increase was consistently blunted by the Ca2+ chelator ethylene glycol tetraacetic acid; neocortical Ca2+ levels were significantly higher in all six patients; no difference in AGC transport rates was found in isolated mitochondria from patients and controls following removal of the Ca2+-containing postmitochondrial supernatant. Expression of AGC1, the predominant AGC isoform in brain, and cytochrome c oxidase activity were both increased in autistic patients, indicating an activation of mitochondrial metabolism. Furthermore, oxidized mitochondrial proteins were markedly increased in four of the six patients. Variants of the AGC1-encoding SLC25A12 gene were neither correlated with AGC activation nor associated with autism-spectrum disorders in 309 simplex and 17 multiplex families, whereas some unaffected siblings may carry a protective gene variant. Therefore, excessive Ca2+ levels are responsible for boosting AGC activity, mitochondrial metabolism and, to a more variable degree, oxidative stress in autistic brains. AGC and altered Ca2+ homeostasis play a key interactive role in the cascade of signaling events leading to autism: their modulation could provide new preventive and therapeutic strategies.
Combined D-2- and L-2-hydroxyglutaric aciduria (D/L-2-HGA) is a devastating neurometabolic disorder, usually lethal in the first years of life. Autosomal recessive mutations in the SLC25A1 gene, which encodes the mitochondrial citrate carrier (CIC), were previously detected in patients affected with combined D/L-2-HGA. We showed that transfection of deficient fibroblasts with wild-type SLC25A1 restored citrate efflux and decreased intracellular 2-hydroxyglutarate levels, confirming that deficient CIC is the cause of D/L-2-HGA. We developed and implemented a functional assay and applied it to all 17 missense variants detected in a total of 26 CIC-deficient patients, including eight novel cases, showing reduced activities of varying degrees. In addition, we analyzed the importance of residues affected by these missense variants using our existing scoring system. This allowed not only a clinical and biochemical overview of the D/L-2-HGA patients but also phenotype-genotype correlation studies.
Background: The great interest in the production of highly pure lactic acid enantiomers comes from the application of polylactic acid (PLA) for the production of biodegradable plastics. Yeasts can be considered as alternative cell factories to lactic acid bacteria for lactic acid production, despite not being natural producers, since they can better tolerate acidic environments. We have previously described metabolically engineered Saccharomyces cerevisiae strains producing high amounts of L-lactic acid (>60 g/L) at low pH. The high product concentration represents the major limiting step of the process, mainly because of its toxic effects. Therefore, our goal was the identification of novel targets for strain improvement possibly involved in the yeast response to lactic acid stress. Results: The enzyme S-adenosylmethionine (SAM) synthetase catalyses the only known reaction leading to the biosynthesis of SAM, an important cellular cofactor. SAM is involved in phospholipid biosynthesis and hence in membrane remodelling during acid stress. Since only the enzyme isoform 2 seems to be responsive to membrane related signals (e.g. myo-inositol), Sam2p was tagged with GFP to analyse its abundance and cellular localization under different stress conditions. Western blot analyses showed that lactic acid exposure correlates with an increase in protein levels. The SAM2 gene was then overexpressed and deleted in laboratory strains. Remarkably, in the BY4741 strain its deletion conferred higher resistance to lactic acid, while its overexpression was detrimental. Therefore, SAM2 was deleted in a strain previously engineered and evolved for industrial lactic acid production and tolerance, resulting in higher production. Conclusions: Here we demonstrated that the modulation of SAM2 can have different outcomes, from clear effects to no significant phenotypic responses, upon lactic acid stress in different genetic backgrounds, and that at least in one genetic background SAM2 deletion led to an industrially relevant increase in lactic acid production. Further work is needed to elucidate the molecular basis of these observations, which underline once more that strain robustness relies on complex cellular mechanisms, involving regulatory genes and proteins. Our data confirm cofactor engineering as an important tool for cell factory improvement.
The modification of enzyme cofactor concentrations can be used as a method for both studying and engineering metabolism. We varied Saccharomyces cerevisiae mitochondrial NAD levels by altering expression of its specific mitochondrial carriers. Changes in mitochondrial NAD levels affected the overall cellular concentration of this coenzyme and the cellular metabolism. In batch culture, a strain with a severe NAD depletion in mitochondria succeeded in growing, albeit at a low rate, on fully respiratory media. Although the strain increased the efficiency of its oxidative phosphorylation, the ATP concentration was low. Under the same growth conditions, a strain with a mitochondrial NAD concentration higher than that of the wild type similarly displayed a low cellular ATP level, but its growth rate was not affected. In chemostat cultures, when cellular metabolism was fully respiratory, both mutants showed low biomass yields, indicative of impaired energetic efficiency. The two mutants increased their glycolytic fluxes, and as a consequence, the Crabtree effect was triggered at lower dilution rates. Strikingly, the mutants switched from a fully respiratory metabolism to a respirofermentative one at the same specific glucose flux as that of the wild type. This result seems to indicate that the specific glucose uptake rate and/or glycolytic flux should be considered one of the most important independent variables for establishing the long-term Crabtree effect. In cells growing under oxidative conditions, bioenergetic efficiency was affected by both low and high mitochondrial NAD availability, which suggests the existence of a critical mitochondrial NAD concentration in order to achieve optimal mitochondrial functionality.
The mitochondrial aspartate-glutamate carrier isoform 1 (AGC1) catalyzes a Ca(2+)-stimulated export of aspartate to the cytosol in exchange for glutamate, and is a key component of the malate-aspartate shuttle which transfers NADH reducing equivalents from the cytosol to mitochondria. By sustaining the complete glucose oxidation, AGC1 is thought to be important in providing energy for cells, in particular in the CNS and muscle where this protein is mainly expressed. Defects in the AGC1 gene cause AGC1 deficiency, an infantile encephalopathy with delayed myelination and reduced brain N-acetylaspartate (NAA) levels, the precursor of myelin synthesis in the CNS. Here, we show that undifferentiated Neuro2A cells with down-regulated AGC1 display a significant proliferation deficit associated with reduced mitochondrial respiration, and are unable to synthesize NAA properly. In the presence of high glutamine oxidation, cells with reduced AGC1 restore cell proliferation, although oxidative stress increases and NAA synthesis deficit persists. Our data suggest that the cellular energetic deficit due to AGC1 impairment is associated with inappropriate aspartate levels to support neuronal proliferation when glutamine is not used as metabolic substrate, and we propose that delayed myelination in AGC1 deficiency patients could be attributable, at least in part, to neuronal loss combined with lack of NAA synthesis occurring during the nervous system development.
Friedreich ataxia (FRDA) is an inherited recessive disorder caused by a deficiency in the mitochondrial protein frataxin. There is currently no effective treatment for FRDA available, especially for neurological deficits. In this study, we tested diazoxide, a drug commonly used as vasodilator in the treatment of acute hypertension, on cellular and animal models of FRDA. We first showed that diazoxide increases frataxin protein levels in FRDA lymphoblastoid cell lines, via the mTOR pathway. We then explored the potential therapeutic effect of diazoxide in frataxin-deficient transgenic YG8sR mice and we found that prolonged oral administration of 3mpk/d diazoxide was found to be safe, but produced variable effects concerning efficacy. YG8sR mice showed improved beam walk coordination abilities and footprint stride patterns, but a generally reduced locomotor activity. Moreover, they showed significantly increased frataxin expression, improved aconitase activity and decreased protein oxidation in cerebellum and brain mitochondrial tissue extracts. Further studies are needed before this drug should be considered for FRDA clinical trials.
Mitochondrial carriers are a family of transport proteins that shuttle metabolites, nucleotides, and coenzymes across the mitochondrial membrane. The function of only a few of the 35 Saccharomyces cerevisiae mitochondrial carriers still remains to be uncovered. In this study, we have functionally defined and characterized the S. cerevisiae mitochondrial carrier Yhm2p. The YHM2 gene was overexpressed in S. cerevisiae, and its product was purified and reconstituted into liposomes. Its transport properties, kinetic parameters, and targeting to mitochondria show that Yhm2p is a mitochondrial transporter for citrate and oxoglutarate. Reconstituted Yhm2p also transported oxaloacetate, succinate, and fumarate to a lesser extent, but virtually not malate and isocitrate. Yhm2p catalyzed only a counter-exchange transport that was saturable and inhibited by sulfhydryl-blocking reagents but not by 1,2,3-benzenetricarboxylate (a powerful inhibitor of the citrate/malate carrier). The physiological role of Yhm2p is to increase the NADPH reducing power in the cytosol (required for biosynthetic and antioxidant reactions) and probably to act as a key component of the citrate-oxoglutarate NADPH redox shuttle between mitochondria and cytosol. This protein function is based on observations documenting a decrease in the NADPH/NADP(+) and GSH/GSSG ratios in the cytosol of DeltaYHM2 cells as well as an increase in the NADPH/NADP(+) ratio in their mitochondria compared with wild-type cells. Our proposal is also supported by the growth defect displayed by the DeltaYHM2 strain and more so by the DeltaYHM2DeltaZWF1 strain upon H(2)O(2) exposure, implying that Yhm2p has an antioxidant function.
In Saccharomyces cerevisiae there are 35 putative transport proteins which belong to the mitochondrial carriers family. The identified members of this family shuttle metabolites, nucleotides and coenzymes across the inner mitochondrial membrane. We have functionally defined and characterized the mitochondrial carrier Yhm2p. The YHM2 gene was overexpressed in S. cerevisiae and its product was purified and reconstituted into liposomes. Its transport properties and kinetic parameters showed that Yhm2p is a mitochondrial transporter for citrate and oxoglutarate. It also transported oxaloacetate, succinate and fumarate to a lesser extent, but not malate and isocitrate. Yhm2p catalyzed a counter-exchange transport that was saturable and inhibited by sulfhydryl-blocking reagents but not by 1,2,3-benzenetricarboxylate. By mass spectrometry analysis we observed a decrease in the NADPH/NADP+ and GSH/GSSG ratios in the cytosol of ΔYHM2 cells as well as an increase in the NADPH/ NADP+ ratio in their mitochondria compared to wild-type cells. Probably, Yhm2p acts as a key component of a citrate-oxoglutarate NADPH redox shuttle between mitochondria and cytosol, and its physiological role is to increase the NADPH reducing power in the cytosol. Our proposal is also supported by the growth defect displayed by the ΔYHM2 strain and more so by the ΔYHM2ΔZWF1 strain upon H2O2 exposure, implying that Yhm2p has an antioxidant function.
Whey generated in cheese manufacturing poses serious environmental issues that limit process profitability. The innovation in the dairy sector recognizes the "bio-refinery" as a key to successful handling of whey disposal and economic rise. Cheese whey valorisation is a complex process involving multiple technologies that might lead to value-added products (biomass, fine or bulk chemicals). This work focuses on the optimization of a fermentation process using whey as growth medium and carbon source. Lactose, which is abundant in whey, is a valuable carbon source. However, the microorganism more widely used in industrial fermentation processes, the yeast Saccharomyces cerevisiae, is not a lactose-fermenting yeast. We set up an innovative biotechnological process for the production on large scale of a not-genetically modified yeast biomass that can be used in different contexts, such as bread making, production of probiotics, nutraceuticals, bio-active molecules. In order to use the cheese whey as raw material for the cultivation of S. cerevisiae and to overcome the limitations in the use of lactose we used and externally added the enzyme β-galactosidase. The careful optimization of the amount of added enzyme allowed the gradual release by hydrolysis and the simultaneous consumption of glucose and galactose with a consequent decrease of ethanol and an increase of the biomass produced.
Although the decrease in pyruvate secretion by brewer’s yeasts during fermentation has long been desired in the alcohol beverage industry, rather little is known about the regulation of pyruvate accumulation. In former studies, we developed a pyruvate under-secreting sake yeast by isolating a strain (TCR7) tolerant to ethyl a-transcyanocinnamate, an inhibitor of pyruvate transport into mitochondria. To obtain insights into pyruvate metabolism, in this study, we investigated the mitochondrial activity of TCR7 by oxigraphy and 13C-metabolic flux analysis during aerobic growth. While mitochondrial pyruvate oxidation was higher, glycerol production was decreased in TCR7 compared with the reference. These results indicate that mitochondrial activity is elevated in the TCR7 strain with the consequence of decreased pyruvate accumulation. Surprisingly, mitochondrial activity is much higher in the sake yeast compared with CEN.PK 113-7D, the reference strain in metabolic engineering. When shifted from aerobic to anaerobic conditions, sake yeast retains a branched mitochondrial structure for a longer time than laboratory strains. The regulation of mitochondrial activity can become a completely novel approach to manipulate the metabolic profile during fermentation of brewer’s yeasts.
The genome of Saccharomyces cerevisiae encodes 35 members of the mitochondrial carrier family (MCF) and 58 MCF members are coded by the genome of Arabidopsis thaliana, most of which have been functionally characterized. Here two members of this family, Ymc2p from S. cerevisiae and BOU from Arabidopsis, have been thoroughly characterized. These proteins were overproduced in bacteria and reconstituted into liposomes. Their transport properties and kinetic parameters demonstrate that Ymc2p and BOU transport glutamate, and to a much lesser extent L-homocysteinesulfinate, but not other amino acids and many other tested metabolites. Transport catalyzed by both carriers was saturable, inhibited by mercuric chloride and dependent on the proton gradient across the proteoliposomal membrane. The growth phenotype of S. cerevisiae cells lacking the genes ymc2 and agc1, which encodes the only other S. cerevisiae carrier capable to transport glutamate besides aspartate, was fully complemented by expressing Ymc2p, Agc1p or BOU. Mitochondrial extracts derived from ymc2Δagc1Δ cells, reconstituted into liposomes, exhibited no glutamate transport at variance with wild-type, ymc2Δ and agc1Δ cells, showing that S. cerevisiae cells grown in the presence of acetate do not contain additional mitochondrial transporters for glutamate besides Ymc2p and Agc1p. Furthermore, mitochondria isolated from wild-type, ymc2Δ and agc1Δ strains, but not from the double mutant ymc2Δagc1Δ strain, swell in isosmotic ammonium glutamate showing that glutamate is transported by Ymc2p and Agc1p together with a H+. It is proposed that the function of Ymc2p and BOU is to transport glutamate across the mitochondrial inner membrane and thereby play a role in intermediary metabolism, C1 metabolism and mitochondrial protein synthesis.
Background and Objective: Congenital myasthenic syndromes are rare inherited disorders characterized by fatigable weakness caused by malfunction of the neuromuscular junction. We performed whole exome sequencing to unravel the genetic aetiology in an English sib pair with clinical features suggestive of congenital myasthenia. Methods:We used homozygosity mapping and whole exome sequencing to identify the candidate gene variants. Mutant protein expression and function were assessed in vitro and a knockdown zebrafish model was generated to assess neuromuscular junction development. Results: We identified a novel homozygous missense mutation in the SLC25A1 gene, encoding the mitochondrial citrate carrier. Mutant SLC25A1 showed abnormal carrier function. SLC25A1 has recently been linked to a severe, often lethal clinical phenotype. Our patients had a milder phenotype presenting primarily as a neuromuscular (NMJ) junction defect. Of note, a previously reported patient with different compound heterozygous missense mutations of SLC25A1 has since been shown to suffer from a neuromuscular transmission defect. Using knockdown of SLC25A1 expression in zebrafish, we were able to mirror the human disease in terms of variable brain, eye and cardiac involvement. Importantly, we show clear abnormalities in the neuromuscular junction, regardless of the severity of the phenotype. Conclusions: Based on the axonal outgrowth defects seen in SLC25A1 knockdown zebrafish, we hypothesize that the neuromuscular junction impairment may be related to pre-synaptic nerve terminal abnormalities. Our findings highlight the complex machinery required to ensure efficient neuromuscular function, beyond the proteomes exclusive to the neuromuscular synapse.
L’agenesi del corpo calloso (ACC) è stata associata a diversi difetti della catena respiratoria mitocondriale e degli enzimi del ciclo dell’acido citrico. In questo studio sono riportati i dati relativi ad una paziente che mostrava un severo difetto del neurosviluppo, caratterizzato da ACC e ipoplasia del nervo ottico. Essa presentava elevati valori di 2-idrossiglutarato e degli intermedi del ciclo di Krebs nelle urine e un incremento delle specie reattive dell’ossigeno (ROS) ed una diminuzione del potenziale di membrana mitocondriale nei fibroblasti. Questi dati suggerivano un alterazione del metabolismo mitocondriale. Mediante il sequenziamento dell’intero esoma della paziente sono state individuate due varanti alleliche del gene SLC25A1, che codifica per il trasportatore mitocondriale del citrato. Tali varianti determinano le mutazioni amminoacidiche G130D e R282H. Le due varianti segregano nella famiglia ma risultano essere estremamente rare nei soggetti controllo, dove sono presenti sempre in eterozigosi con l’allele wild-type. Le analisi in silico della struttura del trasportatore mitocondriale hanno evidenziato che i residui amminoacidici mutati sono molto conservati all’inetrno della famiglia dei carrier mitocondriali (MCF) e potrebbero alterare la funzionalità della proteina. Questo dato predittivo è stato validato studiando la proteina ortologa di lievito sia da un punto di vista fenotipico che funzionale. Infatti il ceppo di lievito che presentava la proteina con le due mutazioni ha mostrato un difetto di crescita in condizioni di stress. Inoltre le proteine mutate ricostituite in vescicole fosfolipidiche mostravano una scarsa capacità di catalizzare il trasporto di citrato. In conclusione, i nostri dati hanno evidenziato un collegamento tra un difetto del gene del carrier mitocondriale del citrato e l’agenesi del corpo calloso.
The role of oxidative stress in neurodegeneration and the temporal relationship between oxidative stress and inflammation have been investigated in murine experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). To address these issues and identify specific targets of protein oxidation we have employed a proteomic approach coupled to quantitative determination of key metabolites in cortex tissues from mice with clinical signs of EAE. Our results show a decrease in endogenous antioxidant levels and a specific increase of glutamine synthetase (GS) oxidation with little or no evidence of immune/inflammatory cell invasion. The reduction in enzyme activity associated to GS oxidation leads to an increase of glutamate/ glutamine ratio and paralleled disease severity in EAE mice. The possibility that GS oxidation may cause neurodegeneration through glutamate excitotoxicity is supported by evidence of increasing cortical Ca2+ levels in cortex extracts from animals with greater disease severity. These findings indicate that oxidative stress occurs in brain areas that are not actively undergoing inflammation in EAE and that this can lead to a neurodegenerative process due to the susceptibility of GS to oxidative inactivation.
La presente invenzione ha per oggetto un nuovo procedimento per la sintesi di alcoli chirali mediante l’impiego di Lactobacillus reuteri. L’invenzione ha anche per oggetto l’uso di tale microorganismo per la sintesi di detti alcoli chirali.
Friedreich ataxia (FRDA) is a common form of ataxia caused by decreased expression of the mitochondrial protein frataxin. Oxidative damage of mitochondria is thought to play a key role in the pathogenesis of the disease. Therefore, a possible therapeutic strategy should be directed to an antioxidant protection against mitochondrial damage. Indeed, treatment of FRDA patients with the antioxidant idebenone has been shown to improve neurological functions. The yeast frataxin knock-out model of the disease shows mitochondrial iron accumulation, iron-sulfur cluster defects and high sensitivity to oxidative stress. By flow cytometry analysis we studied reactive oxygen species (ROS) production of yeast frataxin mutant cells treated with two antioxidants, N-acetyl-L-cysteine and a mitochondrially-targeted analog of vitamin E, confirming that mitochondria are the main site of ROS production in this model. Furthermore we found a significant reduction of ROS production and a decrease in the mitochondrial mass in mutant cells treated with rapamycin, an inhibitor of TOR kinases, most likely due to autophagy of damaged mitochondria.
Uncoupling protein 2 (UCP2) is involved in various physiological and pathological processes such as insulin secretion, stem cell differentiation, cancer, and aging. However, its biochemical and physiological function is still under debate. Here we show that UCP2 is a metabolite transporter that regulates substrate oxidation in mitochondria. To shed light on its biochemical role, we first studied the effects of its silencing on the mitochondrial oxidation of glucose and glutamine. Compared with wild-type, UCP2-silenced human hepatocellular carcinoma (HepG2) cells, grown in the presence of glucose, showed a higher inner mitochondrial membrane potential and ATP:ADP ratio associated with a lower lactate release. Opposite results were obtained in the presence of glutamine instead of glucose. UCP2 reconstituted in lipid vesicles catalyzed the exchange of malate, oxaloacetate, and aspartate for phosphate plus a proton from opposite sides of the membrane. The higher levels of citric acid cycle intermediates found in the mitochondria of siUCP2-HepG2 cells compared with those found in wild-type cells in addition to the transport data indicate that, by exporting C4 compounds out of mitochondria, UCP2 limits the oxidation of acetyl-CoA-producing substrates such as glucose and enhances glutaminolysis, preventing the mitochondrial accumulation of C4 metabolites derived from glutamine. Our work reveals a unique regulatory mechanism in cell bioenergetics and provokes a substantial reconsideration of the physiological and pathological functions ascribed to UCP2 based on its purported uncoupling properties.
TheArabidopsis thalianagenome contains 58 members of the solute carrier family SLC25, also called the mitochondrial carrier family, many of which have been shown to transport specific metabolites, nucleotides and cofactors across the mitochondrial membrane. Here two Arabidopsis members of this family, AtUCP1 and AtUCP2, which were previously thought to be uncoupling proteins and hence named UCP1/PUMP1 and UCP2/PUMP2, respectively, are assigned with a novel function. They were expressed in bacteria, purified and reconstituted in phospholipid vesicles. Their transport properties demonstrate that they transport amino acids (aspartate, glutamate, cysteinesulfinate and cysteate), dicarboxylates (malate, oxaloacetate and 2-oxoglutarate), phosphate, sulfate and thiosulfate. Transport was saturable and inhibited by mercurials and other mitochondrial carrier inhibitors at various degrees. AtUCP1 and AtUCP2 catalyzed a fast counter-exchange transport as well as a low uniport of substrates with transport rates of AtUCP1 being much higher than those of AtUCP2 in both cases. The aspartate/glutamate hetero-exchange mediated by AtUCP1 and AtUCP2 is electroneutral, in contrast to that mediated by the mammalian mitochondrial aspartate glutamate carrier. Furthermore, both carriers were found to be targeted to mitochondria. Metabolite profiling of single and double knockouts show changes in organic acid and amino acid levels. Notably, AtUCP1 and AtUCP2 are the first reported mitochondrial carriers in Arabidopsis to transport aspartate and glutamate. It is proposed that the primary function of AtUCP1 and AtUCP2 is to catalyze an aspartateout/glutamateinexchange across the mitochondrial membrane and thereby contribute to the export of reducing equivalents from the mitochondria in photorespiration.
La presente invenzione ha per oggetto una preparazione farmaceutica per il trattamento dell’atassia di Friedreich e per il trattamento o prevenzione delle patologie ad essa correlate. In particolare la presente invenzione ha per oggetto l’uso di diazossido o 7-cloro-3-metil-4H-1,2,4 benzotiazidina 1,1-diossido, in combinazione con glucosio e/o leucina, per il trattamento dell’atassia di Friedreich (FRDA) e per il trattamento o prevenzione delle patologie ad essa correlate.
The present invention concerns a pharmaceutical preparation for the treatment of Friedreich's ataxia and for the treatment or prevention of pathologies related thereto. Particularly the present invention concerns the use of diazoxide or 7-chloro-3-methyl - 4H -1,2,4 benzothiadiazine 1,1-dioxide, in combination with glucose and/or leucine, for the treatment of Friedreich's ataxia (FRDA) and for the treatment or prevention of pathologies related thereto.
Condividi questo sito sui social