Effettua una ricerca
Pietro De Palma
Ruolo
Professore Ordinario
Organizzazione
Politecnico di Bari
Dipartimento
Dipartimento di Meccanica, Matematica e Management
Area Scientifica
Area 09 - Ingegneria industriale e dell'informazione
Settore Scientifico Disciplinare
ING-IND/08 - Macchine a Fluido
Settore ERC 1° livello
PE - Physical sciences and engineering
Settore ERC 2° livello
PE8 Products and Processes Engineering: Product design, process design and control, construction methods, civil engineering, energy processes, material engineering
Settore ERC 3° livello
PE8_5 - Fluid mechanics, hydraulic-, turbo-, and piston engines
The understanding of transition in shear flows has recently progressed along new paradigms based on the central role of coherent flow structures and their nonlinear interactions. We follow such paradigms to identify, by means of a nonlinear optimization of the energy growth at short time, the initial perturbation which most easily induces transition in a boundary layer. Moreover, a bisection procedure has been used to identify localized flow structures living on the edge of chaos, found to be populated by hairpin vortices and streaks. Such an edge structure appears to act as a relative attractor for the trajectory of the laminar base state perturbed by the initial finite-amplitude disturbances, mediating the route to turbulence of the flow, via the triggering of a regeneration cycle of Λ and hairpin structures at different space and time scales. These findings introduce a new, purely nonlinear scenario of transition in a boundary-layer flow.
This paper provides an investigation of the structure of the stable manifold of the lower branch steady state for the plane Couette flow. Minimal energy perturbations to the laminar state are computed, which approach within a prescribed tolerance the lower branch steady state in a finite time. For small times, such minimal-energy perturbations maintain at least one of the symmetries characterizing the lower branch state. For a sufficiently large time horizon, such symmetries are broken and the minimal-energy perturbations on the stable manifold are formed by localized asymmetrical vortical structures. These minimal-energy perturbations could be employed to develop a control procedure aiming at stabilizing the low-dissipation lower branch state. © 2014 The Japan Society of Fluid Mechanics and IOP Publishing Ltd.
"The present work provides an optimal control strategy, based on the nonlinear Navier–Stokes equations, aimed at hampering the rapid growth of unsteady finite- amplitude perturbations in a Blasius boundary-layer flow. A variational procedure is used to find the blowing and suction control law at the wall providing the maximum damping of the energy of a given perturbation at a given target time, with the final aim of leading the flow back to the laminar state. Two optimally growing finite-amplitude initial perturbations capable of leading very rapidly to transition have been used to initialize the flow. The nonlinear control procedure has been found able to drive such perturbations back to the laminar state, provided that the target time of the minimization and the region in which the blowing and suction is applied have been suitably chosen. On the other hand, an equivalent control procedure based on the linearized Navier–Stokes equations has been found much less effective, being not able to lead the flow to the laminar state when finite-amplitude disturbances are considered. Regions of strong sensitivity to blowing and suction have been also identified for the given initial perturbations: when the control is actuated in such regions, laminarization is also observed for a shorter extent of the actuation region. The nonlinear optimal blowing and suction law consists of alternating wall-normal velocity perturbations, which appear to modify the core flow structures by means of two distinct mechanisms: (i) a wall-normal velocity compensation at small times; (ii) a rotation-counterbalancing effect al larger times. Similar control laws have been observed for different target times, values of the cost parameter, and streamwise extents of the blowing and suction zone, meaning that these two mechanisms are robust features of the optimal control strategy, provided that the nonlinear effects are taken into account."
We use direct numerical simulations in the presence of free-stream turbulence having different values of intensity, Tu, and integral length scale, L, in order to determine which kind of structures are involved in the path to transition of a boundary-layer flow. The main aim is to determine under which conditions the path to transition involves structures similar to the linear or non-linear optimal perturbations. For high values of Tu and L, we observe a large-amplitude path to transition characterized by localized vortical structures and patches of high- and low-momentum fluctuations. Such a scenario is found to correlate well with the Λ and hairpin structures resulting from the time evolution of non-linear optimal perturbations, whereas, for lower Tu and L, a larger correlation is found with respect to linear optimal disturbances. This indicates that a large-amplitude path to transition exists, different from the one characterized by elongated streaks undergoing secondary instability. To distinguish between the two transition scenarios, a simple parameter linked to the streamwise localisation of high- and low-momentum zones is introduced. Finally, an accurate law to predict the transition location is provided, taking into account both Tu and L, valid for both the transition scenarios.
The understanding of laminar-turbulent transition in shear flows has recently progressed along new paradigms based on the central role of nonlinear exact coherent states. We follow such paradigms to identify, for the first time in a spatially developing flow, localized flow structures living on the edge of chaos, which are the precursors of turbulence. These coherent structures are constituted by hairpin vortices and streamwise streaks. The results reported here extend the dynamical systems description of transition to spatially developing flows. © 2011 American Institute of Physics.
This paper provides the analysis of bursting and transition to turbulence in a Couette flow, based on the growth of nonlinear optimal disturbances. We use a global variational procedure to identify such optimal disturbances, defined as those initial perturbations yielding the largest energy growth at a given target time, for given Reynolds number and initial energy. The nonlinear optimal disturbances are found to be characterized by a basic structure, composed of inclined streamwise vortices along localized regions of low and high momentum. This basic structure closely recalls that found in boundary-layer flow (Cherubini et al., J. Fluid Mech., vol. 689, 2011, pp. 221-253), indicating that this structure may be considered the most 'energetic' one at short target times. However, small differences in the shape of these optimal perturbations, due to different levels of the initial energy or target time assigned in the optimization process, may produce remarkable differences in their evolution towards turbulence. In particular, direct numerical simulations have shown that optimal disturbances obtained for large initial energies and target times induce bursting events, whereas for lower values of these parameters the flow is directly attracted towards the turbulent state. For this reason, the optimal disturbances have been classified into two classes, the highly dissipative and the short-path perturbations. Both classes lead the flow to turbulence, skipping the phases of streak formation and secondary instability which are typical of the classical transition scenario for shear flows. The dynamics of this transition scenario exploits three main features of the nonlinear optimal disturbances: (i) the large initial value of the streamwise velocity component; (ii) the streamwise dependence of the disturbance; (iii) the presence of initial inclined streamwise vortices. The short-path perturbations are found to spend a considerable amount of time in the vicinity of the edge state (Schneider et al., Phys. Rev. E, vol. 78, 2008, 037301), whereas the highly dissipative optimal disturbances pass closer to the edge, but they are rapidly repelled away from it, leading the flow to high values of the dissipation rate. After this dissipation peak, the trajectories do not lead towards the turbulent attractor, but they spend some time in the vicinity of an unstable periodic orbit (UPO). This behaviour led us to conjecture that bursting events can be obtained not only as homoclinic orbits approaching the UPO, as recently found by van Veen & Kawahara (Phys. Rev. Lett., vol. 107, 2011, p. 114501), but also as heteroclinic orbits between the equilibrium solution on the edge and the UPO.
This paper describes a scenario of transition from laminar to turbulent flow in a spatially developing boundary layer over a flat plate. The base flow is the Blasius non-parallel flow solution; it is perturbed by optimal disturbances yielding the largest energy growth over a short time interval. Such perturbations are computed by a nonlinear global optimization approach based on a Lagrange multiplier technique. The results show that nonlinear optimal perturbations are characterized by a localized basic building block, called the minimal seed, defined as the smallest flow structure which maximizes the energy growth over short times. It is formed by vortices inclined in the streamwise direction surrounding a region of intense streamwise disturbance velocity. Such a basic structure appears to be a robust feature of the base flow since it is practically invariant with respect to the initial energy of the perturbation, the target time, the Reynolds number and the dimensions of the computational domain. The minimal seed grows very rapidly in time while spreading, and it triggers nonlinear effects which bring the flow to turbulence in a very efficient manner, through the formation of a turbulence spot. This evolution of the initial optimal disturbance has been studied in detail by direct numerical simulations. Using a perturbative formulation of the Navier-Stokes equations, each linear and nonlinear convective term of the equations has been analysed. The results show the fundamental role of the streamwise inclination of the vortices in the process. The nonlinear coupling of the finite amplitude disturbances is crucial to sustain such streamwise inclination, as well as to generate dislocations within the flow structures, and local inflectional velocity distributions. The analysis provides a picture of the transition process characterized by a sequence of structures appearing successively in the flow, namely, Λ vortices, hairpin vortices and streamwise streaks. Finally, a disturbance regeneration cycle is conceived, initiated by the fast nonlinear amplification of the minimal seed, providing a possible scenario for the continuous regeneration of the same fundamental flow structures at smaller space and time scales. © 2011 Cambridge University Press.
This work provides a three-dimensional energy optimization analysis, looking for perturbations inducing the largest energy growth at a finite time in a boundary-layer flow in the presence of roughness elements. The immersed boundary technique has been coupled with a Lagrangian optimization in a three-dimensional framework. Four roughness elements with different heights have been studied, inducing amplification mechanisms that bypass the asymptotical growth of Tollmien-Schlichting waves. The results show that even very small roughness elements, inducing only a weak deformation of the base flow, can strongly localize the optimal disturbance. Moreover, the highest value of the energy gain is obtained for a varicose perturbation. This result demonstrates the relevance of varicose instabilities for such a flow and shows a different behavior with respect to the secondary instability theory of boundary layer streaks.
This work provides a global optimization analysis, looking for perturbations inducing the largest energy growth at a finite time in a boundary-layer flow in the presence of smooth three-dimensional roughness elements. Amplification mechanisms are described which can bypass the asymptotical growth of Tollmien-Schlichting waves. Smooth axisymmetric roughness elements of different height have been studied, at different Reynolds numbers. The results show that even very small roughness elements, inducing only a weak deformation of the base flow, can localize the optimal disturbance characterizing the Blasius boundary-layer flow. Moreover, for large enough bump heights and Reynolds numbers, a strong amplification mechanism has been recovered, inducing an increase of several orders of magnitude of the energy gain with respect to the Blasius case. In particular, the highest value of the energy gain is obtained for an initial varicose perturbation, differently to what found for a streaky parallel flow. Optimal varicose perturbations grow very rapidly by transporting the strong wall-normal shear of the base flow, which is localized in the wake of the bump. Such optimal disturbances are found to lead to transition for initial energies and amplitudes considerably smaller than sinuous optimal ones, inducing hairpin vortices downstream of the roughness element.
This paper provides some recent developments of an immersed boundary method for solving flows of industrial interest at arbitrary Mach numbers. The method is based on the solution of the preconditioned compressible Favre-averaged Navier - Stokes equations closed by the k-ω low Reynolds number turbulence model. A flexible local grid refinement technique is implemented on parallel machines using a domain-decomposition approach and an edge-based data structure. Thanks to the efficient grid generation process, based on the ray-tracing technique, and the use of the METIS software, it is possible to obtain the partitioned grids to be assigned to each processor with a minimal effort by the user. This allows one to by-pass the very time consuming generation process of a body-fitted grid.
Condividi questo sito sui social