Effettua una ricerca
Antonella D'orazio
Ruolo
Professore Ordinario
Organizzazione
Politecnico di Bari
Dipartimento
Dipartimento di Ingegneria Elettrica e dell'Informazione
Area Scientifica
Area 09 - Ingegneria industriale e dell'informazione
Settore Scientifico Disciplinare
ING-INF/02 - Campi Elettromagnetici
Settore ERC 1° livello
PE - Physical sciences and engineering
Settore ERC 2° livello
PE7 Systems and Communication Engineering: Electrical, electronic, communication, optical and systems engineering
Settore ERC 3° livello
PE7_5 (Micro and nano) electronic, optoelectronic and photonic components
Perfect, narrow-band absorption is achieved in an asymmetric 1D photonic crystal with a monolayer graphene defect. Thanks to the large third-order nonlinearity of graphene and field localization in the defect layer we demonstrate the possibility to achieve controllable, saturable absorption for the pump frequency.
A one-dimensional dielectric grating, based on a simple geometry, is proposed and investigated to enhance light absorption in a monolayer graphene exploiting guided mode resonances. Numerical findings reveal that the optimized configuration is able to absorb up to 60% of the impinging light at normal incidence for both TE and TM polarizations resulting in a theoretical enhancement factor of about 26 with respect to the monolayer graphene absorption (≈2.3%). Experimental results confirm this behavior showing CVD graphene absorbance peaks up to about 40% over narrow bands of a few nanometers. The simple and flexible design points to a way to realize innovative, scalable and -easy-to fabricate-graphene-based optical absorbers.
We report theoretical and experimental investigations of the optical response of two-dimensional periodic arrays of rectangular gold nanopatches grown on a monolayer graphene placed on a glass substrate. We discuss the numerical analysis and optical characterization by means of reflection spectra and show that rectangular nanopatches display a polarization-dependent response, at normal incidence, which leads to double plasmonic resonances due to the Wood anomaly. We detail the fabrication process highlighting how the resist primer and the adhesion layer can reduce and impede the graphene doping due to the environment and to the nanopatches, respectively, by means of Raman spectroscopy.
We theoretically investigate the amplification of extraordinary optical transmission (EOT) phenomena in periodic arrays of subwavelength apertures incorporating gain media. In particular, we consider a realistic structure consisting of an opaque silver film perforated by a periodic array of slits and clad on each side by an optically pumped dielectric thin film containing rhodamine dye molecules. By solving the semiclassical electronic rate equations coupled to rigorous finite-element simulations of the electromagnetic fields, we show how the resonant electric-field enhancement associated with EOT properties enables complete ohmic loss compensation at moderate pump intensity levels. Furthermore, our calculations show that, as a consequence of the strong spatial hole-burning effects displayed by the considered structures, three separate regimes of operation arise: the system can behave as an absorber, an optical amplifier or a laser, depending on the value of the pump intensity. A discussion on the feasibility of reaching the lasing regime in the considered class of structures is also presented.
We report on the formation of plasmonic bandgaps in two-dimensional periodic arrangements of gold patches.Orthogonal arrays of subwavelength slits with different periodicities have been studied by means of a threedimensional finite-difference time-domain (FDTD) code, changing incident polarization and geometrical parameters. Spectral response of gold patches having different a form factor and surrounded by different media have been also investigated and compared in order to give a full description of bandgap shifts paving the way for the design of polarization-sensitive devices.
Il progetto è dedicato allo studio di biosensori che integrano componenti micro-nano elettronici e/o ottici per la realizzazione di dispositivi innovativi, quali rivelatori di microRNA, mediante l'utilizzo di nuovi materiali bidimensionali, come il grafene, per applicazioni che spaziano dalla medicina personalizzata fino ad arrivare alle applicazioni biotecnologiche.I temi specifici dell'attività di ricerca sono: (a) definizione di strumenti numerici e tecnologici per lo studio di nuove configurazioni per biosensori; (b) progettazione, ottimizzazione e realizzazione di pre-prototipi; (c) integrazione tra dispositivi proposti e sistemi ICT per la comunicazione e la elaborazione dei dati.La letteratura recente evidenzia che l'identificazione e il monitoraggio del microRNA nel sangue, o in altri liquidi fisiologici, permette la diagnosi precoce di molte malattie incluse il cancro o disfunzioni cardiovascolari [1,2]. D'altro canto, il grafene si presenta come un materiale innovativo e altamente versatile per le sue proprietà elettroniche e ottiche che possono essere modulate opportunamente mediante stimoli esterni.L'applicazione di questo nuovo materiale in questo ambito di ricerca può portare alla realizzazione di biosensori innovativi, integrati ed efficienti per prevenire, diagnosticare e migliorare la comprensione di fattori determinanti per la salute dell'uomo.[1] J. Lu,et al, 435 Nature (2005)[2] R. A. Boon, et al, 495 Nature (2013)
Condividi questo sito sui social