Effettua una ricerca
Alessandra Castegna
Ruolo
Professore Associato
Organizzazione
Università degli Studi di Bari Aldo Moro
Dipartimento
DIPARTIMENTO DI BIOSCIENZE, BIOTECNOLOGIE E BIOFARMACEUTICA
Area Scientifica
AREA 05 - Scienze biologiche
Settore Scientifico Disciplinare
BIO/12 - Biochimica Clinica e Biologia Molecolare Clinica
Settore ERC 1° livello
Non Disponibile
Settore ERC 2° livello
Non Disponibile
Settore ERC 3° livello
Non Disponibile
The mitochondrial citrate-malate exchanger (CIC), a known target of acetylation, is up-regulated in activated immune cells and plays a key role in the production of inflammatory mediators. However, the role of acetylation in CIC activity is elusive. We show that CIC is acetylated in activated primary human macrophages and U937 cells and the level of acetylation is higher in glucose-deprived compared to normal glucose medium. Acetylation enhances CIC transport activity, leading to a higher citrate efflux from mitochondria in exchange with malate. Cytosolic citrate levels do not increase upon activation of cells grown in deprived compared to normal glucose media, indicating that citrate, transported from mitochondria at higher rates from acetylated CIC, is consumed at higher rates. Malate levels in the cytosol are lower in activated cells grown in glucose-deprived compared to normal glucose medium, indicating that this TCA intermediate is rapidly recycled back into the cytosol where it is used by the malic enzyme. Additionally, in activated cells CIC inhibition increases the NADP+/NADPH ratio in glucose-deprived cells; this ratio is unchanged in glucose-rich grown cells due to the activity of the pentose phosphate pathway. Consistently, the NADPH-producing isocitrate dehydrogenase level is higher in activated glucose-deprived as compared to glucose rich cells. These results demonstrate that, in the absence of glucose, activated macrophages increase CIC acetylation to enhance citrate efflux from mitochondria not only to produce inflammatory mediators but also to meet the NADPH demand through the actions of isocitrate dehydrogenase and malic enzyme.
Microglial cells are brain-resident macrophages engaged in surveillance and maintained in a constant state of relative inactivity. However, their involvement in autoimmune diseases indicates that in pathological conditions microglia gain an inflammatory phenotype. The mechanisms underlying this change in the microglial phenotype are still unclear. Since metabolism is an important modulator of immune cell function, we focused our attention on glutamine synthetase (GS), a modulator of the response to lipopolysaccharide (LPS) activation in other cell types, which is expressed by microglia.
Mitochondria play a key role in eukaryotic cells, being mediators of energy, biosynthetic and regulatory requirements of these cells. Emerging proteomics techniques have allowed scientists to obtain the differentially expressed proteome or the proteomic redox status in mitochondria. This has unmasked the diversity of proteins with respect to subcellular location, expression and interactions. Mitochondria have become a research 'hot spot' in subcellular proteomics, leading to identification of candidate clinical targets in neurodegenerative diseases in which mitochondria are known to play pathological roles. The extensive efforts to rapidly obtain differentially expressed proteomes and unravel the redox proteomic status in mitochondria have yielded clinical insights into the neuropathological mechanisms of disease, identification of disease early stage and evaluation of disease progression. Although current technical limitations hamper full exploitation of the mitochondrial proteome in neurosciences, future advances are predicted to provide identification of specific therapeutic targets for neurodegenerative disorders.
The mitochondrial aspartate-glutamate carrier isoform 1 (AGC1) catalyzes a Ca(2+)-stimulated export of aspartate to the cytosol in exchange for glutamate, and is a key component of the malate-aspartate shuttle which transfers NADH reducing equivalents from the cytosol to mitochondria. By sustaining the complete glucose oxidation, AGC1 is thought to be important in providing energy for cells, in particular in the CNS and muscle where this protein is mainly expressed. Defects in the AGC1 gene cause AGC1 deficiency, an infantile encephalopathy with delayed myelination and reduced brain N-acetylaspartate (NAA) levels, the precursor of myelin synthesis in the CNS. Here, we show that undifferentiated Neuro2A cells with down-regulated AGC1 display a significant proliferation deficit associated with reduced mitochondrial respiration, and are unable to synthesize NAA properly. In the presence of high glutamine oxidation, cells with reduced AGC1 restore cell proliferation, although oxidative stress increases and NAA synthesis deficit persists. Our data suggest that the cellular energetic deficit due to AGC1 impairment is associated with inappropriate aspartate levels to support neuronal proliferation when glutamine is not used as metabolic substrate, and we propose that delayed myelination in AGC1 deficiency patients could be attributable, at least in part, to neuronal loss combined with lack of NAA synthesis occurring during the nervous system development.
The role of glutamine synthetase (GS), a key glutamine-producing enzyme, is unclear during adipocyte differentiation. We assess here whether GS expression influences the adipocytic response to a proinflammatory challenge at different differentiation stages. GS is expressed at late stages of differentiation and desensitizes mature cells to bacterial lipopolysaccharide (LPS) by increasing intracellular glutamine levels. LPS-activated mature adipocytes are unable to produce inflammatory mediators; their sensitivity to LPS is rescued in conditions of GS inhibition, in which intracellular glutamine levels decrease. The ability of adipocytes at different differentiation days to respond to LPS negatively correlates to GS expression and intracellular glutamine levels. Modulation of intracellular glutamine levels by GS expression represents an endogenous mechanism by which mature adipocytes control the inflammatory response.
Glutamine synthetase (GS) is the adenosine triphosphate (ATP)-dependent enzyme that catalyses the synthesis of glutamine by condensing ammonium to glutamate. In the circulatory system, glutamine carries ammonia from muscle and brain to the kidney and liver. In brain reduction of GS activity has been suggested as a mechanism mediating neurotoxicity in neurodegenerative disorders. In cancer, the delicate balance between glutamine synthesis and catabolism is a critical event. In vitro evidence, confirmed in vivo in some cases, suggests that reduced GS activity in cancer cells associates with a more invasive and aggressive phenotype. However, GS is known to be highly expressed in cells of the tumor microenvironment, such as fibroblasts, adipocytes and immune cells, and their ability to synthesize glutamine is responsible for the acquisition of protumoral phenotypes. This has opened a new window into the complex scenario of the tumor microenvironment, in which the balance of glutamine consumption versus glutamine synthesis influences cellular function. Since GS expression responds to glutamine starvation, a lower glutamine synthesizing power due to the absence of GS in cancer cells might apply a metabolic pressure on stromal cells. This event might push stroma towards a GS-high/protumoral phenotype. When referred to stromal cells, GS expression might acquire a 'bad' significance to the point that GS inhibition might be considered a conceivable strategy against cancer metastasis.
Homocysteine, a sulfur-containing amino acid derived from the methionine metabolism, is located at the branch point of two pathways of the methionine cycle, i.e. remethylation and transsulfuration. Gene abnormalities in the enzymes catalyzing reactions in both pathways lead to hyperhomocysteinemia. Hyperhomocysteinemia is associated with increased risk for congenital disorders, including neural tube closure defects, heart defects, cleft lip/palate, Down syndrome, and multi-system abnormalities in adults. Since hyperhomocysteinemia is known to affect the extent of DNA methylation, it is likely that abnormal DNA methylation during embryogenesis, may be a pathogenic factor for these congenital disorders. In this review we highlight the importance of homocysteinemia by describing the genes encoding for enzymes of homocysteine metabolism relevant to the clinical practice, especially cystathionine-β-synthase and methylenetetrahydrofolate reductase mutations, and the impairment of related metabolites levels. Moreover, a possible correlation between hyperhomocysteine and congenital disorders through the involvement of abnormal DNA methylation during embryogenesis is discussed. Finally, the relevance of present and future diagnostic tools such as tandem mass spectrometry and next generation sequencing in newborn screening is highlighted
Mitochondrial carriers are a family of transport proteins that shuttle metabolites, nucleotides, and coenzymes across the mitochondrial membrane. The function of only a few of the 35 Saccharomyces cerevisiae mitochondrial carriers still remains to be uncovered. In this study, we have functionally defined and characterized the S. cerevisiae mitochondrial carrier Yhm2p. The YHM2 gene was overexpressed in S. cerevisiae, and its product was purified and reconstituted into liposomes. Its transport properties, kinetic parameters, and targeting to mitochondria show that Yhm2p is a mitochondrial transporter for citrate and oxoglutarate. Reconstituted Yhm2p also transported oxaloacetate, succinate, and fumarate to a lesser extent, but virtually not malate and isocitrate. Yhm2p catalyzed only a counter-exchange transport that was saturable and inhibited by sulfhydryl-blocking reagents but not by 1,2,3-benzenetricarboxylate (a powerful inhibitor of the citrate/malate carrier). The physiological role of Yhm2p is to increase the NADPH reducing power in the cytosol (required for biosynthetic and antioxidant reactions) and probably to act as a key component of the citrate-oxoglutarate NADPH redox shuttle between mitochondria and cytosol. This protein function is based on observations documenting a decrease in the NADPH/NADP(+) and GSH/GSSG ratios in the cytosol of DeltaYHM2 cells as well as an increase in the NADPH/NADP(+) ratio in their mitochondria compared with wild-type cells. Our proposal is also supported by the growth defect displayed by the DeltaYHM2 strain and more so by the DeltaYHM2DeltaZWF1 strain upon H(2)O(2) exposure, implying that Yhm2p has an antioxidant function.
In Saccharomyces cerevisiae there are 35 putative transport proteins which belong to the mitochondrial carriers family. The identified members of this family shuttle metabolites, nucleotides and coenzymes across the inner mitochondrial membrane. We have functionally defined and characterized the mitochondrial carrier Yhm2p. The YHM2 gene was overexpressed in S. cerevisiae and its product was purified and reconstituted into liposomes. Its transport properties and kinetic parameters showed that Yhm2p is a mitochondrial transporter for citrate and oxoglutarate. It also transported oxaloacetate, succinate and fumarate to a lesser extent, but not malate and isocitrate. Yhm2p catalyzed a counter-exchange transport that was saturable and inhibited by sulfhydryl-blocking reagents but not by 1,2,3-benzenetricarboxylate. By mass spectrometry analysis we observed a decrease in the NADPH/NADP+ and GSH/GSSG ratios in the cytosol of ΔYHM2 cells as well as an increase in the NADPH/ NADP+ ratio in their mitochondria compared to wild-type cells. Probably, Yhm2p acts as a key component of a citrate-oxoglutarate NADPH redox shuttle between mitochondria and cytosol, and its physiological role is to increase the NADPH reducing power in the cytosol. Our proposal is also supported by the growth defect displayed by the ΔYHM2 strain and more so by the ΔYHM2ΔZWF1 strain upon H2O2 exposure, implying that Yhm2p has an antioxidant function.
Plants make coenzyme A (CoA) in the cytoplasm but use it for reactions in mitochondria, chloroplasts, and peroxisomes, implying that these organelles have CoA transporters. A plant peroxisomal CoA transporter is already known, but plant mitochondrial or chloroplastic CoA transporters are not. Mitochondrial CoA transporters belonging to the mitochondrial carrier family, however, have been identified in yeast (Saccharomyces cerevisiae; Leu-5p) and mammals (SLC25A42). Comparative genomic analysis indicated that angiosperms have two distinct homologs of these mitochondrial CoA transporters, whereas nonflowering plants have only one. The homologs from maize (Zea mays; GRMZM2G161299 and GRMZM2G420119) and Arabidopsis (Arabidopsis thaliana; At1g14560 and At4g26180) all complemented the growth defect of the yeast leu5D mitochondrial CoA carrier mutant and substantially restored its mitochondrial CoA level, confirming that these proteins have CoA transport activity. Dual-import assays with purified pea (Pisum sativum) mitochondria and chloroplasts, and subcellular localization of green fluorescent protein fusions in transiently transformed tobacco (Nicotiana tabacum) Bright Yellow-2 cells, showed that the maize and Arabidopsis proteins are targeted to mitochondria. Consistent with the ubiquitous importance of CoA, the maize and Arabidopsis mitochondrial CoA transporter genes are expressed at similar levels throughout the plant. These data show that representatives of both monocotyledons and eudicotyledons have twin, mitochondrially located mitochondrial carrier family carriers for CoA. The highly conserved nature of these carriers makes possible their reliable annotation in other angiosperm genomes.
It is currently held that thiamin is made in chloroplasts and converted in the cytosol to the active cofactor thiamin diphosphate (ThDP), and that mitochondria and plastids import ThDP. The organellar transporters that mediate ThDP import in plants have not been identified. Comparative genomic analysis indicated that two members of the mitochondrial carrier family (MCF) in Arabidopsis (At5g48970 and At3g21390) and two in maize (GRMZM2G118515 and GRMZM2G124911) are related to the ThDP carriers of animals and Saccharomyces cerevisiae. Expression of each of these plant proteins in a S. cerevisiae ThDP carrier (TPC1) null mutant complemented the growth defect on fermentable carbon sources and restored the level of mitochondrial ThDP and the activity of the mitochondrial ThDP-dependent enzyme acetolactate synthase. The plant proteins were targeted to mitochondria as judged by dual import assays with purified pea mitochondria and chloroplasts, and by microscopic analysis of the subcellular localization of green fluorescent protein fusions in transiently transformed tobacco suspension cells. Both maize genes were shown to be expressed throughout the plant, which is consistent with the known ubiquity of mitochondrial ThDP-dependent enzymes. Collectively, these data establish that plants have mitochondrially located MCF carriers for ThDP, and indicate that these carriers are highly evolutionarily conserved. Our data provide a firm basis to propagate the functional annotation of mitochondrial ThDP carriers to other angiosperm genomes.
In Down's syndrome there is evidence that increased gene expression coding for specific cystathionine beta-synthase translates directly into biochemical aberrations, which result in a biochemical and metabolic imbalance of the methyl status. This event is destined to impact mitochondrial function since methylation is a necessary event in mitochondria and relies on the availability and uptake of the methyl donor S-adenosylmethionine. Indeed mitochondrial dysfunctions have been widely described in Down's syndrome, but they have never been correlated to a possible mitochondrial methyl unbalance. In the present study we find that the mitochondrial levels of S-adenosylmethionine are reduced in Down's syndrome compared to control cells demonstrating the effect of the methyl unbalance on mitochondria. The possible role of methylation in mitochondria is discussed and some preliminary results on a possible methylation target are presented.
From the evidence on clinical studies and experimental mouse models we now know that tumor associated macrophages (TAMs) sustain tumor development in many different ways. They play a role in angiogenesis, tumor cell invasion and metastasis formation. Additionally, TAMs interfere with natural killer and T cell antitumoral activities, producing an immune suppressive environment that protects tumor cell growth. This indicates that the tumoricidal activity of macrophages within the tumor microenviroment is lost due to an imbalance of the regulatory mechanisms underpinning these cells' function. Since metabolism is emerging as a major modulator of macrophage function, metabolic changes in response to signals coming from cancer or other immune cells might promote this imbalance, enhancing the tumorigenic activities of TAMs. In this review we describe the novel, most recent findings on how metabolism shapes TAM functions or conversely, how TAMs influence the activity of other cells through metabolic mechanisms. The complete elucidation of the metabolic switches between pro- and anti-tumoral properties of macrophages, now still in its infancy, is destined to provide scientists with new instruments not only to understand but also to combat cancer. This article is protected by copyright. All rights reserved.
Oxidative stress plays a key role in cardiac diseases, although the sources of reactive oxygen species (ROS) have not been defined conclusively. Recent studies demonstrated that the mitochondrial enzymes monoamine oxidases (MAO) are a major source of ROS in reperfusion injury and decompensated hypertrophy. The present study characterized the molecular mechanisms responsible for the increased activity of MAO. Based upon available information, the activity of these enzymes depends mostly on substrate availability. Therefore, we aimed at identifying the major substrates of MAO in hearts undergoing oxidative stress. Mass spectrometry was used to identify and quantitate potential substrates by comparing their contents in the absence and the presence of MAO inhibition. METHODS AND RESULTS: Firstly, we applied a metabolomic profiling method to investigate changes in amine contents in isolated mouse hearts, by means of a LC-MS/MS approach in the precursor ion scanning mode. Maximal oxidative stress was induced by perfusing isolated mouse hearts with 1 mM hydrogen peroxide for 15 min. Addition of 0.5 mM pargyline to the perfusion buffer 10 min before hydrogen peroxide resulted in a significant increased content of the typical MAO substrates serotonin and epinephrine, along with histamine and its product N1-methyl histamine. N1-methyl histamine was found to be the more aboundant metabolite and its content displayed a 180% increase in pargyline-treated hearts, as compared to the untreated ones. The accumulation of MAO substrates upon pargyline treatment correlated with a reduced MAO-dependent production of hydrogen peroxide. In fact we observed a decreased extent of (i) oxidation of myofibrillar proteins, as detected by disulfide bond formation in tropomyosin (Western blot under non reducing conditions), and (ii) ROS levels in tissue, as detected by dihydroethidine (DHE) staining. Surprisingly, these findings imply that the profound injury induced by H2O2 administration is not due to a direct action. Indeed, H2O2 perfusion appears to trigger an amplification pathway whereby the increase in MAO activity due to a larger substrate availability is the end-effector of the initial oxidative stress. CONCLUSIONS: This study provides the first information on endogenous substrates of MAO becoming available under conditions of oxidative stress that is then amplified by the increased MAO activity. The identification of histamine and N1-methyl histamine, that are involved in neurotransmission and immune response, suggests a significant trafficking of MAO substrates between myocytes and non-myocyte cells in the heart.
Significant metabolic changes occur in the shift from resting to activated cellular status in inflammation. Thus, changes in expression of a large number of genes and extensive metabolic reprogramming gives rise to acquisition of new functions (e.g. production of cytokines, intermediates for biosynthesis, lipid mediators, PGE, ROS and NO). In this context, mitochondrial carriers, which catalyze the transport of solute across mitochondrial membrane, change their expression to transport mitochondrially produced molecules, among which citrate and succinate, to be used as intracellular signalling molecules in inflammation. This review summarizes the mitochondrial carriers studied so far that are, directly or indirectly, involved in inflammation.
Recent expansion of our knowledge on epigenetic changes strongly suggests that not only nuclear DNA (nDNA), but also mitochondrial DNA (mtDNA) may be subjected to epigenetic modifications related to disease development, environmental exposure, drug treatment and aging. Thus, mtDNA methylation is attracting increasing attention as a potential biomarkerfor the detection and diagnosis of diseases and the understanding of cellular behaviour in particular conditions. In this paper we review the current advances in mtDNA methylation studies with particular attention to the evidences of mtDNAmethylation changes in diseases and physiological conditions so far investigated. Technological advances for the analysis of epigenetic variations are promising tools to provide insights into methylation of mtDNA with similar resolution levels as those reached for nDNA. However, many aspects related to mtDNA methylation are still unclear. More studies are needed to understand whether and how changes in mtDNA methylation patterns, global and gene specific, are associated to diseases or risk factors
The genome of Saccharomyces cerevisiae encodes 35 members of the mitochondrial carrier family (MCF) and 58 MCF members are coded by the genome of Arabidopsis thaliana, most of which have been functionally characterized. Here two members of this family, Ymc2p from S. cerevisiae and BOU from Arabidopsis, have been thoroughly characterized. These proteins were overproduced in bacteria and reconstituted into liposomes. Their transport properties and kinetic parameters demonstrate that Ymc2p and BOU transport glutamate, and to a much lesser extent L-homocysteinesulfinate, but not other amino acids and many other tested metabolites. Transport catalyzed by both carriers was saturable, inhibited by mercuric chloride and dependent on the proton gradient across the proteoliposomal membrane. The growth phenotype of S. cerevisiae cells lacking the genes ymc2 and agc1, which encodes the only other S. cerevisiae carrier capable to transport glutamate besides aspartate, was fully complemented by expressing Ymc2p, Agc1p or BOU. Mitochondrial extracts derived from ymc2Δagc1Δ cells, reconstituted into liposomes, exhibited no glutamate transport at variance with wild-type, ymc2Δ and agc1Δ cells, showing that S. cerevisiae cells grown in the presence of acetate do not contain additional mitochondrial transporters for glutamate besides Ymc2p and Agc1p. Furthermore, mitochondria isolated from wild-type, ymc2Δ and agc1Δ strains, but not from the double mutant ymc2Δagc1Δ strain, swell in isosmotic ammonium glutamate showing that glutamate is transported by Ymc2p and Agc1p together with a H+. It is proposed that the function of Ymc2p and BOU is to transport glutamate across the mitochondrial inner membrane and thereby play a role in intermediary metabolism, C1 metabolism and mitochondrial protein synthesis.
Monoamine oxidase (MAO), a mitochondrial enzyme that oxidizes biogenic amines generating hydrogen peroxide, is a major source of oxidative stress in cardiac injury. However, the molecular mechanisms underlying its overactivation in pathological conditions are still poorly characterized. Here, we investigated whether the enhanced MAO-dependent hydrogen peroxide production can be due to increased substrate availability using a metabolomic profiling method. We identified N1-methylhistamine -the main catabolite of histamine- as an important substrate fueling MAO in Langendorff mouse hearts, directly perfused with a buffer containing hydrogen peroxide or subjected to ischemia/reperfusion protocol. Indeed, when these hearts were pretreated with the MAO inhibitor pargyline we observed N1-methylhistamine accumulation along with reduced oxidative stress. Next, we showed that synaptic terminals are the major source of N1-methylhistamine. Indeed, in vivo sympathectomy caused a decrease of N1-methylhistamine levels, which was associated with a marked protection in post-ischemic reperfused hearts. As far as the mechanism is concerned, we demonstrate that exogenous histamine is transported into isolated cardiomyocytes and triggers a rise in the levels of reactive oxygen species (ROS). Once again, pargyline pretreatment induced intracellular accumulation of N1-methylhistamine along with decrease in ROS levels. These findings uncover a receptor-independent mechanism for histamine in cardiomyocytes. In summary, our study reveals a novel and important pathophysiological causative link between MAO activation and histamine availability during pathophysiological conditions such as oxidative stress/cardiac injury.
The role of oxidative stress in neurodegeneration and the temporal relationship between oxidative stress and inflammation have been investigated in murine experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). To address these issues and identify specific targets of protein oxidation we have employed a proteomic approach coupled to quantitative determination of key metabolites in cortex tissues from mice with clinical signs of EAE. Our results show a decrease in endogenous antioxidant levels and a specific increase of glutamine synthetase (GS) oxidation with little or no evidence of immune/inflammatory cell invasion. The reduction in enzyme activity associated to GS oxidation leads to an increase of glutamate/ glutamine ratio and paralleled disease severity in EAE mice. The possibility that GS oxidation may cause neurodegeneration through glutamate excitotoxicity is supported by evidence of increasing cortical Ca2+ levels in cortex extracts from animals with greater disease severity. These findings indicate that oxidative stress occurs in brain areas that are not actively undergoing inflammation in EAE and that this can lead to a neurodegenerative process due to the susceptibility of GS to oxidative inactivation.
Glutamine-synthetase (GS), the glutamine-synthesizing enzyme from glutamate, controls important events, including the release of inflammatory mediators, mammalian target of rapamycin (mTOR) activation, and autophagy. However, its role in macrophages remains elusive. We report that pharmacologic inhibition of GS skews M2-polarized macrophages toward the M1-like phenotype, characterized by reduced intracellular glutamine and increased succinate with enhanced glucose flux through glycolysis, which could be partly related to HIF1α activation. As a result of these metabolic changes and HIF1α accumulation, GS-inhibited macrophages display an increased capacity to induce T cell recruitment, reduced T cell suppressive potential, and an impaired ability to foster endothelial cell branching or cancer cell motility. Genetic deletion of macrophagic GS in tumor-bearing mice promotes tumor vessel pruning, vascular normalization, accumulation of cytotoxic T cells, and metastasis inhibition. These data identify GS activity as mediator of the proangiogenic, immunosuppressive, and pro-metastatic function of M2-like macrophages and highlight the possibility of targeting this enzyme in the treatment of cancer metastasis.
Mitochondrial diseases are a plethora of inherited neuromuscular disorders sharing defects in mitochondrial respiration, but largely different from one another for genetic basis and pathogenic mechanism. Whole exome sequencing was performed in a familiar trio (trio-WES) with a child affected by severe epileptic encephalopathy associated to respiratory complex I deficiency and mitochondrial DNA depletion in skeletal muscle. By trio-WES we identified biallelic mutations in SLC25A10, a nuclear gene encoding a member of the mitochondrial carrier family. Genetic and functional analyses conducted on patient fibroblasts showed that SLC25A10 mutations are associated to reduction in RNA quantity and aberrant RNA splicing, and to absence of SLC25A10 protein and its transporting function. The yeast SLC25A10 ortholog knockout strain showed defects in mitochondrial respiration and mitochondrial DNA content, similarly to what observed in the patient skeletal muscle, and growth susceptibility to oxidative stress. Albeit patient fibroblasts were depleted in the main antioxidant molecules NADPH and glutathione, transport assays demonstrated that SLC25A10 is unable to transport glutathione. Here we report the first recessive mutations of SLC25A10 associated to an inherited severe mitochondrial neurodegenerative disorder. We propose that SLC25A10 loss-of-function causes pathological disarrangements in respiratory-demanding conditions and oxidative stress vulnerability.
The genome of Saccharomyces cerevisiae contains 35 members of the mitochondrial carrier family, nearly all of which have been functionally characterized. In this study, the identification of the mitochondrial carrier for adenosine 5'-phosphosulfate (APS) is described. The corresponding gene (YPR011c) was overexpressed in bacteria. The purified protein was reconstituted into phospholipid vesicles and its transport properties and kinetic parameters were characterized. It transported APS, 3'-phospho-adenosine 5'-phosphosulfate, sulfate and phosphate almost exclusively by a counter-exchange mechanism. Transport was saturable and inhibited by bongkrekic acid and other inhibitors. To investigate the physiological significance of this carrier in S. cerevisiae, mutants were subjected to thermal shock at 45°C in the presence of sulfate and in the absence of methionine. At 45°C cells lacking YPR011c, engineered cells (in which APS is produced only in mitochondria) and more so the latter cells, in which the exit of mitochondrial APS is prevented by the absence of YPR011cp, were less thermotolerant. Moreover, at the same temperature all these cells contained less methionine and total glutathione than wild-type cells. Our results show that S. cerevisiae mitochondria are equipped with a transporter for APS and that YPR011cp-mediated mitochondrial transport of APS occurs in S. cerevisiae under thermal stress conditions.
Uncoupling protein 2 (UCP2) is involved in various physiological and pathological processes such as insulin secretion, stem cell differentiation, cancer, and aging. However, its biochemical and physiological function is still under debate. Here we show that UCP2 is a metabolite transporter that regulates substrate oxidation in mitochondria. To shed light on its biochemical role, we first studied the effects of its silencing on the mitochondrial oxidation of glucose and glutamine. Compared with wild-type, UCP2-silenced human hepatocellular carcinoma (HepG2) cells, grown in the presence of glucose, showed a higher inner mitochondrial membrane potential and ATP:ADP ratio associated with a lower lactate release. Opposite results were obtained in the presence of glutamine instead of glucose. UCP2 reconstituted in lipid vesicles catalyzed the exchange of malate, oxaloacetate, and aspartate for phosphate plus a proton from opposite sides of the membrane. The higher levels of citric acid cycle intermediates found in the mitochondria of siUCP2-HepG2 cells compared with those found in wild-type cells in addition to the transport data indicate that, by exporting C4 compounds out of mitochondria, UCP2 limits the oxidation of acetyl-CoA-producing substrates such as glucose and enhances glutaminolysis, preventing the mitochondrial accumulation of C4 metabolites derived from glutamine. Our work reveals a unique regulatory mechanism in cell bioenergetics and provokes a substantial reconsideration of the physiological and pathological functions ascribed to UCP2 based on its purported uncoupling properties.
Condividi questo sito sui social