Effettua una ricerca
Mauro Lomascolo
Ruolo
II livello - I Ricercatore
Organizzazione
Consiglio Nazionale delle Ricerche
Dipartimento
Non Disponibile
Area Scientifica
AREA 02 - Scienze fisiche
Settore Scientifico Disciplinare
FIS/03 - Fisica della Materia
Settore ERC 1° livello
Non Disponibile
Settore ERC 2° livello
Non Disponibile
Settore ERC 3° livello
Non Disponibile
Matrix-assisted pulsed laser evaporation (MAPLE) was used to deposit layers of poly(9,9-dioctylfluorene) (PFO) to study the relation between the solvent properties (laser light absorption, boiling temperature and solubility parameters) and the morphology of the deposited films. To this end, the polymer was diluted (0.5 wt%) in tetrahydrofuran-THF, toluene and toluene/hexane mixtures. The thickness of the films was equal to 70 +/- 20 nm. The morphology and uniformity of the films was investigated by Atomic Force Microscopy and by the photoluminescence emission properties of the polymer films, respectively. It is shown that, although the solubility parameters of the solvents are important in controlling the film roughness and morphology, the optical absorption properties and boiling temperature play a very important role, too. In fact, for matrices characterized by the same total solubility parameter, lower roughness values are obtained for films prepared using solvents with lower penetration depth of the laser radiation and higher boiling temperatures.
In this paper we report on the effects of the insertion of Cr atoms on the electrical and optical properties of indium tin oxide (ITO) films to be used as electrodes in spinpolarized light-emitting devices. ITO films and ITO(80 nm)/Cr-doped ITO(20 nm) bilayers and Cr-doped ITO films with a thickness of 20 nm were grown by pulsed ArF excimer laser deposition. The optical, structural, morphological wand electrical properties of ITO films and ITO/Cr-doped structures were characterized by UV-Visible transmission and reflection spectroscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM) and Hall-effect analysis. For the different investigations, the samples were deposited on different substrates like silica and carbon coated Cu grids. ITO films with a thickness of 100 nm, a resistivity as low as similar to 4 x 10(-4) Omega cm, an energy gap of similar to 4.3 eV and an atomic scale roughness were deposited at room temperature without any post-deposition process. The insertion of Cr into the ITO matrix in the upper 20 nm of the ITO matrix induced variations in the physical properties of the structure like an increase of average roughness (similar to 0.4-0.5 nm) and resistivity (up to similar to 8x10(-4) Omega cm). These variations were correlated to the microstructure of the Cr-doped ITO films with particular attention to the upper 20 nm.
In this work two quantum dot (QD) solar cell structures have been proposed and compared as potential solutions for the realization of the Intermediate Band Solar Cell concept: the well known dot/barrier material system InAs / GaAs and an engineered InAlGaAs/AlGaAs combination. The Al-based structures have been obtained by a suitably developed growth procedure with the aim of increasing island density and engineering the absorption spectrum and the energy band profile in the near infrared region. Along with tunability of the confined electron energy levels, the proposed Al-based structures exhibit transport features, such as reduced edge recombination losses and lower reverse saturation current density with respect to the InAs/GaAs QD system, which can be useful for enhancing device performances. © 2014 AEIT.
We investigated the excitation density dependence of the photoluminescence spectra of hybrid poly(9,9-dioctylfluorene)-CdSe/ZnS nanocrystals (PF8-NCs) thin films. We demonstrate that this experiment allows the determination of the efficiency of all the CdSe/ZnS NCs excitation processes and that the presence of amplified spontaneous emission (ASE) from the PF8 leads to a strong dependence of the NC excitation processes from the laser excitation density. Below the PF8 ASE threshold only about 6% of the excitons in the NCs are due to pump laser absorption, while about 94% of the NC excitation is due to the interaction with the PF8, and it is due for about 58% to PF8 -> NC Forster resonant energy transfer (FRET) and for about 37% to reabsorption by the NCs of the PF8 luminescence. ne presence of PF8 ASE significantly modifies this scenario by strongly decreasing the FRET importance and strongly increasing the reabsorption one. The interplay between reduced FRET and increased reabsorption overall decreases the NC excitation due to PF8 indicating that ASE from the donors should be avoided if efficient NCs excitation under strong pumping is wished.
Concentrated solar power (CSP) plants are one of several renewable energy technologies with significant potential to meet a part of our future energy demand. By now, CSP systems are used to supply photovoltaic or thermal power plant, but results on nanorectennas suggest the possibility to use this technology for direct energy conversion of solar radiation into electricity. A rectenna is a rectifying antenna that can be used to directly convert wave energy into DC electricity. Experiences in microwave applications have shown energy conversion efficiency in the order of 85%, and recently empirical tests have demonstrated that this technology can be used up to the infrared wavelength. The present paper, together with first preliminary results on the fabrication of the rectifier (the key element of a rectenna) and its electrical behavior, proposes the numerical simulation of a new CSP system where a receiver, heated by concentrated solar radiation, reemits infrared energy on the nanorectenna, which converts the incoming energy into electricity. In this way the receiver plays the role of a sunlight radiation converter to infrared energy. The numerical simulation of the system consists of two steps. The first is a ray-tracing model to calculate the concentrator optical efficiency and the energy distribution on the focusing area of the parabolic mirror. The second step consists in the receiver temperature calculation as function of the incident solar radiation. The numerical procedure allows the calculation of the concentrator/receiver assembly performance which returns the energy incident on the nanorectenna as a function of external environmental conditions. Copyright © 2012 by ASME.
We investigate the Amplified Spontaneous Emission (ASE) properties of a prototypical host-guest polymer polymer blend, namely poly(9,9-dioctylfluorene) (PF8) and poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) blend, with different concentration ratio. We show that the initial F8BT content increase causes an increase of the F8BT ASE threshold, even leading to ASE suppression for F8BT contents between 25% and 75%. ASE is then recovered upon further increase of the F8BT relative content. We demonstrate that the ASE properties of the PF8:F8BT are dominated by morphology effects, like submicrometric phase segregation, determining the net gain of the active waveguides.
The use of nanofluids as working fluids in direct absorption solar collector is growing up and the study of optical properties of nanoparticles is an important step for the success of this new technology. In this paper we report optical absorption measurements performed on several metal oxide nano- particles (ZnO,CeO2, andFe2O3) as a function of temperature in the range 25-500 °C, in order to study their optical properties, and to investigate how several heating cycles could affect nanoparticle structural stability and absorption characteristics. These are quite important issues to be investigated in order to assess the possibility to use such metal-oxide nanoparticles as gas-based high temperature nanofluid in Concentrated Solar Power (CSP).
In this paper we report on optical absorption measurements performed on several metal oxide nanoparticles (ZnO, CeO2, Fe2O3) as a function of temperature in the range 25500 °C, in order to study the optical properties, and to investigate how several heating cycles could affect nanoparticle structural stability and absorption characteristics. These are quite important issues to be investigated in order to assess the possibility to use such metal-oxide nanoparticles as gas-based high temperature nanofluid in concentrated solar power (CSP).
A promisingnewgenerationofsolarthermalcollectorabletoenhancethethermalefficiency istheDASC (Direct absorberSolarCollector).Inthispaperwereportopticalabsorptionmeasurementsperformedon severalwater-basednanofluids (Al2O3, CuO,TiO2, ZnO,CeO2, andFe2O3) asafunctionofnanoparticles concentration. Thesemeasurementsareoffundamentalimportancetoassessthepossibilitytousethe abovementionedmetal-oxidenanoparticlesinliquid-basednanofluids fordirectabsorptionlowtem- perature flat panelsolarcollector.Theobtainedresultsshowdifferentopticalbehaviorsofthenanofluids depending onnanoparticlesmaterialandconcentration.Inallmeasurementsthetransmittancerises passing fromvisibletoinfraredregionandinsomecases,whenthenanoparticlesconcentrationistoo low,theextinctiondistancegrowsuptovalueslargerthanthetypicaldiameterofasolarreceiver.
We report on nitrogen dioxide (NO2) sensing measurements by means of zinc oxide films presenting different morphologies. The variation in the photoluminescence emission of the films is employed as transduction mechanism to detect the presence of NO2 gas molecules at room temperature. The significant role of film morphology on the sensing properties is presented and possible limits in the use of ZnO nanostructures for NO2 detection at high gas concentration (>20 ppm) and low gas flow (50 ml/min), where a worsening of the sensor response is observed, are discussed. These features are ascribed to a likely incomplete reversibility of the NO2 adsorption process and examined in connection with the mechanisms of interaction between NO2 molecules and ZnO.
The optical response by NO2 gas adsorption at different concentrations has been investigated, at room temperature, in ZnO nanostructured films grown by controlled vapor phase deposition. The variation (quenching) in the photoluminescence signal from excitonic and defects bands, due to the interactions between the oxidizing gas molecules and the sample surface, has been detected and dynamic responses and calibration curves as a function of gas concentration have been obtained and analyzed for each band. We showed that the sensing response results larger in excitonic band than in defect one and that the emission signal rises from two different quenchable and unquenchable states. A simple model was proposed in order to explain the quenching processes on the emission intensity and to correlate them to the morphological features of the samples. Finally, the reversibility of the quenching effects has also been tested at high gas concentration. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3700251]
The irradiation of a polycarbonate (PC) matrix with 28Siþ ions has been performed by selecting threedifferent energies: 0.5 MeV, 1.0 MeV and 2.0 MeV. The comparative study of the modifications induced inthe polymer as a function of the incident ion beam energy has been carried out in the range of fluencesbetween 5 1013 ions cm2 and 1 1015 ions cm2. The changes induced in the structure of the matrixtowards the production of conducting plastics for optoelectronics devices have been evaluated by Ramanand Photoluminescence spectroscopy. The carbonization process of the polymer generates a networkmade of sp2-bonded graphitic clusters embedded in a sp3-bonded matrix. The amount ofnanocrystalline-graphite with respect to amorphous-carbon increases as ion energy and fluence increase,in accordance with the increase of the sp2-order arrangement. With 0.5 MeV the modification process isat an initial stage so that the changes, in terms of structure and PL emission, are observed only for thehighest fluence, while for 1.0 MeV it has been achieved a higher density of small cluster with an orderand homogeneity even better than for 2.0 MeV. The irradiation process with a suitable set of experimentalparameters allows tuning the PC emission from ~510 nm (pristine matrix) up to ~550e600 nm.
An analytical overview of experimental results about the heat transfer capabilities of nanofluids is presented, using widely scattered available information from diverse literature sources. It is shown that, despite the large number of publications available about this issue, only few studies provide quantitative estimates on a complete set of experimental conditions so far and many studies are not coherent. Bearing in mind this problem, in this study a selection of the most valuable papers has been done, taking into account different points of view and hypotheses. Even if this work cannot be considered exhaustive of the complete literature in the field of nanofluids, it can be taken into account as a quick reference guide to have an overview of the different heat transfer phenomena in nanofluids and how the most important parameters (size, shape, concentration, materials etc.) influence the expected thermal performance of nanofluids. (C) 2014 Elsevier Ltd. All rights reserved.
In this work, we report on the competition between two-step two photon absorption, carrier recombination,and escape in the photocurrent generation mechanisms of high quality InAs/GaAs quantumdot intermediate band solar cells. In particular, the different role of holes and electrons ishighlighted. Experiments of external quantum efficiency dependent on temperature and electricalor optical bias (two-step two photon absorption) highlight a relative increase as high as 38% at10K under infrared excitation. We interpret these results on the base of charge separation by phononassisted tunneling of holes from quantum dots. We propose the charge separation as an effectivemechanism which, reducing the recombination rate and competing with the other escapeprocesses, enhances the infrared absorption contribution. Meanwhile, this model explains why thermalescape is found to predominate over two-step two photon absorption starting from 200 K,whereas it was expected to prevail at lower temperatures (70 K), solely on the basis of the relativelylow electron barrier height in such a system. VC 2016 AIP Publishing LLC.
In this work, the evolution of the Au assisted-growth of ZnO nanorods deposited by vapour phase deposition both on sapphire and on indium-tin-oxide on glass (ITO-glass) substrates has been studied. Our investigation demonstrates that the growth proceeds first as a 3D growth, giving rise to a buffer layer, few microns thick, formed by ZnO grains with different orientation. Then a 1D transition occurs with the nucleation of a dense array of vertically aligned nanorods. A different degree of crystalline order and nanorods alignment was found between the samples grown on ITO-glass and sapphire substrates, which was ascribed to the different morphology that the Au seed layer acquires on the two different substrates. A semi-quantitative analysis of the ZnO crystalline orientation was carried out by X-ray diffraction (XRD) measurements performed at fixed incidence configuration and supported by high resolution scanning electron microscopy (HR-SEM) investigations on focused ion beam (FIB) prepared cross-sections.
We have investigated the optical properties ofcolloidal seed-grown CdSe (seed)/CdTe (arms) nanotetrapodsboth experimentally and computationally. The tetrapods exhibita type-II transition arising from electrons localized in the CdSeseed region and holes delocalized in the CdTe arms, along witha residual type-I recombination in long-arm tetrapods.Experimentsand theory helped to identify the origin of both types oftransitions and their size dependence. In particular, timeresolvedexperiments performed at 10 K evidenced a sizedependent,long living type-II radiative emission arising fromthe peculiar electron-hole wave function localization. Temperature-dependent photoluminescence (PL) studies indicate that, at high temperature (>150 K), the main process limiting the PLquantum efficiency of the type-I PL is thermal escape of the charge carriers through efficient exciton-optical phonon coupling. Thetype-II PL instead is limited both by thermal escape and by the promotion of electrons from the conduction band of the seed regionto that of the arms, occurring at T > 200 K.
Various kinds of zinc oxide (ZnO) nanostructures, such as columns, pencils, hexagonal pyramids, hexagonal hierarchical structures, as well as smooth and rough films, were grown by pulsed laser deposition using KrF and ArF excimer lasers, without use of any catalyst. ZnO films were deposited at substrate temperatures from 500 to 700A degrees C and oxygen background pressures of 1, 5, 50, and 100 Pa. Quite different morphologies of the deposited films were observed using scanning electron microscopy when different laser wavelengths (248 or 193 nm) were used to ablate the bulk ZnO target. Photoluminescence studies were performed at different temperatures (down to 7 K). The gas sensing properties of the different nanostructures were tested against low concentrations of NO(2). The variation in the photoluminescence emission of the films when exposed to NO(2) was used as transduction mechanism to reveal the presence of the gas. The nanostructured films with higher surface-to-volume ratio and higher total surface available for gas adsorption presented higher responses, detecting NO(2) concentrations down to 3 ppm at room temperature.
Il Progetto MAAT mira alla creazione di una piattaforma tecnologica di ricerca industriale basata su processi diNanotecnologia Molecolare per lo sviluppo di nuovi sistemi e apparati funzionali per l'Ambiente e la Salutedell'Uomo.La piattaforma tecnologica che si ambisce implementare si pone in particolare l'obiettivo generale di creare erafforzare la massa critica necessaria per una competizione internazionale vincente nell'ambito delle nanotecnologiedi ultima generazione basate su materiali eco-compatibili ibridi organici/inorganici e processi produttivi a bassoconsumo energetico. Le Nanotecnologie molecolari, intese come progettazione, ingegnerizzazione di materialiorganici funzionali e loro assembly controllato in dispositivi attivi micro/nanostrutturati, costituiscono in questoambito la nuova frontiera della scienza dei materiali e della dispositivistica avanzata nel settore ambientale e dellasalute dell'uomo, offrendo enormi opportunità di innovazione e creazione di nuovi mercati. Obiettivo finale delprogetto sarà la realizzazione di nuovi prodotti, basati su tale piattaforma tecnologica, capaci di rivoluzionare i lorosettori commerciali di riferimento:1) Smart panel semitrasparenti di colore modulabile in cui sono combinate funzionalità di produzione di energia (cellesolari), d'illuminazione (OLEDs) e di schermatura controllata (fotovoltacromico);2) Lab-on-Chips (LOCs) di basso costo in cui sorgenti di eccitazione OLEDs sono integrate direttamente neldispositivo. Il primo prodotto ambisce a rivisitare il concetto di Intelligent House a basso impatto ambientale e ridottoconsumo energetico, il secondo rivoluziona il design dei LOCs permettendo un rilevante abbassamento dei costi, conconseguente allargamento del mercato di riferimento.Il Progetto di ricerca MAAT punta a rilanciare la competitività del territorio Pugliese mediante un processo costante ditrasferimento tecnologico dal mondo della ricerca al tessuto industriale locale. A tal fine verranno adottati modelli diLiving Labs, ossia strutture dinamiche in cui personale delle industrie si confronterà e lavorerà insieme con iricercatori scientifici. Tale organizzazione permetterà un costante incontro delle esigenze industriali con le possibilisoluzioni offerte dagli strumenti scientifici disponibili, nonchè uno sviluppo continuo di nuova conoscenza e progettisecondo uno schema End-user Driven Research. Nell'ambito dei Living Labs verrà avviato inoltre un programmastrutturato di disseminazione e coinvolgimento del tessuto industriale locale (Confindustria, PMI, etc), cheaccompagnerà tutte le fasi di R&D, al fine di stimolare l'innovazione dei prodotti esistenti e la progettazione di nuovi.La piattaforma tecnologia che si intende implementare si baserà sulla consistente comunità scientifica e industriale giàpresente sul territorio. I partner proponenti CNR, UniLe, UniBA e IIT hanno nei passati anni maturato know how etecnologia allo stato dell'arte a livello internazionale nel settore delle Nanotecnologie Molecolari con un core di oltre70 ricercatori attivi nel settore. Tale personale di ricerca ha consolidato solidi rapporti con industrie, maturando unacultura del trasferimento tecnologico unica a livello italiano. Si distinguono tra questi i joint labs tra CNR e UniLEcon le due società proponenti del progetto MAAT, T.R.E., attiva nel settore delle energie rinnovabili e risparmioenergetico, ed ST, attiva nel settore della componentistica elettronica e della Salute dell'uomo.La sinergia tra il know-how tecnico-scientifico delle strutture di Ricerca, il collegamento con una fitta rete dicollaborazioni internazionali di prestigio, nonché il profilo manageriale delle società industriali coinvolte, sonoimportanti caratteristiche di questo progetto che mira al raggiungimento di standard qualitativi oltre lo stato dell'arte ea collocare la Puglia al vertice del panorama internazionale del settore.
Il progetto riguarda la realizzazione di una tecnologia per la deposizione di film sottili per il settore fotovoltaico e prevede da un lato, una parte di sviluppo dei nuovi prodotti fotovoltaici, articolata in tre fasi che vanno dall'ottimizzazione di materiali, interfacce e substrati, alla realizzazione di dispositivi fotovoltaici di test fino alla produzione di prototipi. Dall'altra, una parte di scale-up del nuovo processo, progettazione e realizzazione di prototipi di macchine per la produzione di moduli fotovoltaici a film sottile destinati all'installazione in un impianto pilota in una delle sedi di produzione di Xgroup.
Il presente progetto riguarda la creazione di un centro-laboratorio specializzato nella ricerca di soluzioni tecniche innovative per la realizzazione di impianti di piccole dimensioni per la produzione di energia elettrica da fonte solare. Per impianti di piccole dimensioni si intende riferirsi a dimensioni comprese fra 100 kWe e 1000 kWe. La realizzazione di tali impianti consentirebbe di realizzare la microgenerazione diffusa che non necessiterebbe né di grandi estensioni di terreno per l'impianto né di grandi investimenti, spostando la generazione di energia elettrica dalla grande impresa alla piccola. I campi di utilizzo possono variare dalla fornitura di energia elettrica e di riscaldamento/raffrescamento di condomini a quella di piccole e medie industrie richiedendo superfici per i concentratori che variano dai 250 m2 ai 2500 m2.Tuttavia affinché tale prospettiva sia attuabile bisogna abbattere i costi d'impianto e di gestione, infatti, con l'attuale tecnologia solare gli impianti di piccole dimensioni non risulterebbero mai convenienti da un punto di vista economico.Obiettivi specifici del presente progetto sono dunque:1. lo sviluppo di tecniche innovative per la produzione, la gestione e la manutenzione dei concentratori solari;2. la realizzazione di fluidi termovettori innovativi;3. l'ottimizzazione dei cicli termodinamici per lo sfruttamento ideale del solare termico ad alta temperatura (550°C);4. la realizzazione di sistemi di accumulo innovativi.Il progetto si inquadra nel più ampio contesto dello sviluppo di tecnologie che consentono la produzione di energia elettrica da fonte rinnovabile al fine di ridurre le emissioni di inquinanti nei processi di generazione di potenza.
Lo scopo del progetto è quello di sviluppare tecnologie avanzate nel campo del solare a concentrazione per lagenerazione di potenza elettrica, basate su impianti solari termodinamici ad alta temperatura, su sistemi fotovoltaici esu impianti di recupero calore da sistemi solari a concentrazione.Gli obiettivi generali del progetto sono:- sviluppare nuove tecnologie, nuovi sistemi di produzione e nuove logiche di controllo, nel settore del solaretermodinamico ad alta temperatura, del fotovoltaico a concentrazione, nell'ottica della generazione distribuita edell'integrazione architettonica, per il soddisfacimento della domanda energetica di complessi di piccole e mediedimensioni;- sviluppare un particolare processo cogenerativo che sfrutti la risorsa solare termica a bassa e media temperatura(cascami di calore dall'impianto solare a concentrazione) per la risoluzione del problema ambientale legato allosmaltimento dei fanghi di depurazione;- svolgere attività di ricerca in sinergia con il laboratorio pubblico-privato SOLAR di Lecce;- porre le basi per investimenti finalizzati allo start-up di attività produttive nelle regioni della convergenza.
Condividi questo sito sui social