Effettua una ricerca
Orazio Nicolotti
Ruolo
Ricercatore
Organizzazione
Università degli Studi di Bari Aldo Moro
Dipartimento
DIPARTIMENTO DI FARMACIA-SCIENZE DEL FARMACO
Area Scientifica
AREA 03 - Scienze chimiche
Settore Scientifico Disciplinare
CHIM/08 - Chimica Farmaceutica
Settore ERC 1° livello
Non Disponibile
Settore ERC 2° livello
Non Disponibile
Settore ERC 3° livello
Non Disponibile
Predictive toxicology is a new emerging multifaceted research field aimed at protecting human health and environment from risks posed by chemicals. Such issue is of extreme public relevance and requires a multidisciplinary approach where the experience in medicinal chemistry is of utmost importance. Herein, we will survey some basic recommendations to gather good data and then will review three recent case studies to show how strategies of ligand- and structure-based molecular design, widely applied in medicinal chemistry, can be adapted to meet the more restrictive scientific and regulatory goals of predictive toxicology. In particular, we will report: Docking-based classification models to predict the estrogenic potentials of chemicals. Predicting the bioconcentration factor using biokinetics descriptors. Modeling oral sub-chronic toxicity using a customized k-nearest neighbors (k-NN) approach.
Matrix metalloproteinases (MMPs) are a family of structurally related zinc-containing endopeptidases involved in tissue remodelling and degradation of the extracellular matrix. The failure of common synthetic inhibitors makes the design of new selective and potent MMP inhibitors an extreme challenge in health care for the treatment of various pathological states such as inflammation, arthritis, and cancer. In this view, an over-expression of MMP-2 is supposed to be responsible for the occurrence of many different human tumours and inflammatory processes involving the hydrolysis of the type IV collagen, the main component of the basement membrane. A series of studies therefore focused on the design of new potential inhibitors biased towards MMP-2: campaigns of molecular virtual screening of several large chemical libraries resulted in a number of attractive hits. Interestingly, a shortlist of alloxan-like structures was selected with inhibition constants in the nM range. In this respect, we investigated a series of complexes of MMP-2 with alloxan inhibitors by thermodynamic integration in all atoms molecular dynamics simulations. We thus obtained quantitative differences in binding free energies for a list of alloxan compounds. On this basis, we were able to elucidate the molecular rationale for the remarkable inhibition exerted by these compounds with the ultimate aim of driving the synthesis of new more potent and selective derivatives that are at present awaiting for further experimental investigations through enzymatic assays.
New chloro-substituted biarylmethoxyphenyl piperidine-4-carboxamides were synthesized and assayed in vitro as inhibitors of the blood coagulation enzymes factor Xa (fXa) and thrombin. An investigation of effects of the amidine and isopropyl groups attached at the piperidine nitrogen and 5-(halogenoaryl)isoxazol-3-yl groups as biaryl substituents led us to identify new compounds which proved to be selective fXa inhibitors, with inhibition constants in the low nanomolar range. The most potent compound 21e, that incorporates 2-Cl-thiophen-5-yl group as the P1 motif and 1-isopropylpiperidine P4 group, inhibited fXa with K(i) value of 0.3nM and very high selectivity over thrombin and some other tested serine proteases, achieving moderate levels of anticoagulant activity in the low micromolar range, as assessed by the prothrombin time clotting assay (PT(2)=3.30μM). Based on reliable docking simulations, molecular modeling provided a rationale for interpreting structure-activity relationships. The predicted binding modes highlighted the structural requirements for addressing the subsites S1 and S4 of the fXa enzyme.
Aquaporins (AQPs) play a physiological role in several organs and tissues, and their alteration is associated with disorders of water regulation. The identification of molecular interactions, which are crucial in determining the rate of water flux through the channel, is of pivotal role for the discovery of molecules able to target those interactions and therefore to be used for pathologies ascribable to an altered AQP-dependent water balance. In the present study, a mutational screening of human aquaporin-4 (AQP4) gene was performed on subjects with variable degrees of hearing loss. One heterozygous missense mutation was identified in a Spanish sporadic case, leading to an Asp/Glu amino acid substitution at position 184 (D184E). A BLAST analysis revealed that the amino acid D184 is conserved across species, consistently with a crucial role in the structure/function of AQP4 water channels. The mutation induces a significant reduction in water permeability as measured by the Xenopus laevis oocytes swelling assay and by the use of mammalian cells by total internal reflection microscopy. By Western blot, immunofluorescence and 2D Blue Native/SDS-PAGE we show that the reduction in water permeability is not ascribable to a reduced expression of AQP4 mutant protein or to its incorrect plasma membrane targeting and aggregation into orthogonal arrays of particles. Molecular dynamics simulation provided a molecular explanation of the mechanism whereby the mutation induces a loss of function of the channel. Substituting glutamate for aspartate affects the mobility of the D loop, which acquires a higher propensity to equilibrate in a "closed conformation", thus affecting the rate of water flux. We speculate that this mutation, combined with other genetic defects or concurrently with certain environmental stimuli, could confer a higher susceptibility to deafness. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Since Hansch's extra thermodynamic multi-parameter approach, originally coined as Linear Free Energy Relationship, great efforts in medicinal chemistry have been made to properly estimate the binding free energy. Despite the often small amount, its value is however very critical in determining a successful binding. As a result, its correct estimate may provide a guide for a prospective rational drug design. The calculation of the absolute binding free energies is however a very challenging task as it requires a rigorous treatment of a number of physical terms that are both very time demanding and to some extent not immediately interpretable. In view of this, the introduction of some numerical approximations has permitted to develop the so called Linear Interaction Energy method that, at present, constitutes the best compromise among accuracy, speed of computation and easy interpretation. The initially developed Linear Interaction Energy method was subsequently revisited and several important improvements have been made. Significant examples are the Extended Linear Response, the surface generalized Born LIE, the molecular mechanics generalized Born surface area, the linear interaction energy in continuum electrostatics as well as its quantum mechanics variant. Principles and selected applications of these methods will be herein reviewed.
Matrix metalloproteinases (MMP) are well-known biological targets implicated in tumour progression, homeostatic regulation, innate immunity, impaired delivery of pro-apoptotic ligands, and the release and cleavage of cell-surface receptors. Hence, the development of potent and selective inhibitors targeting these enzymes continues to be eagerly sought. In this paper, a number of alloxan-based compounds, initially conceived to bias other therapeutically relevant enzymes, were rationally modified and successfully repurposed to inhibit MMP-2 (also named gelatinase A) in the nanomolar range. Importantly, the alloxan core makes its debut as zinc binding group since it ensures a stable tetrahedral coordination of the catalytic zinc ion in concert with the three histidines of the HExxHxxGxxH metzincin signature motif, further stabilized by a hydrogen bond with the glutamate residue belonging to the same motif. The molecular decoration of the alloxan core with a biphenyl privileged structure allowed to sample the deep S1′ specificity pocket of MMP-2 and to relate the high affinity towards this enzyme with the chance of forming a hydrogen bond network with the backbone of Leu116 and Asn147 and the side chains of Tyr144, Thr145 and Arg149 at the bottom of the pocket. The effect of even slight structural changes in determining the interaction at the S1′ subsite of MMP-2 as well as the nature and strength of the binding is elucidated via molecular dynamics simulations and free energy calculations. Among the herein presented compounds, the highest affinity (pIC50 = 7.06) is found for BAM, a compound exhibiting also selectivity (>20) towards MMP-2, as compared to MMP-9, the other member of the gelatinases.
The multifactorial nature of chemotherapy failure in controlling cancer is often associated with the occurrence of multidrug resistance (MDR), a phenomenon likely related to the increased expression of members of the ATP binding cassette (ABC) transporter superfamily. In this respect, the most extensively characterized MDR transporters include ABCB1 (also known as MDR1 or P-glycoprotein) and ABCC1 (also known as MRP1) whose inhibition remains a priority to circumvent drug resistance. Herein, we report how the simple galloyl benzamide scaffold can be easily and properly decorated for the preparation of either MRP1 or P-gp selective inhibitors. In particular, some gallamides and pyrogallol-1-monomethyl ethers congeners showed remarkable affinity and selectivity toward MRP1 (e.g. 15g: IC50 = 9.50 μM, > 100 μM). On the other hand, trimethyl ether galloyl anilides, with few exceptions, exhibited moderate to very high and selective P-gp inhibition (e.g., 11g: IC50 = 0.2 μM, > 100μM).
The socioeconomic burden of multi-factorial pathologies, such as neurodegenerative diseases (NDs), is enormous worldwide. Unfortunately, no proven disease-modifying therapy is available yet and in most cases (e.g., Alzheimer's and Parkinson's disease) the approved drugs exert only palliative and symptomatic effects. Nowadays, an emerging strategy for the discovery of disease-modifying drugs is based on the multi-target directed ligand (MTDL) design, an innovative shift from the traditional approach one-drug-one-target to the more ambitious one-drug-more-targets goal. Herein, we review the discovery strategy, the mechanism of action and the biopharmacological evaluation of multipotent ligands exhibiting monoamine oxidase (MAO) inhibition as the core activity with a potential for the treatment of NDs. In particular, MAO inhibitors exhibiting additional acetylcholinesterase (AChE) or nitric oxide synthase (NOS) inhibition, or ion chelation/antioxidant-radical scavenging/anti-inflammatory/A2A receptor antagonist/APP processing modulating activities have been thoroughly examined.
The present invention relates to the use of compounds having a galloyl benzamide structure in the treatment and/or prevention of medical conditions mediated through c-Jun N-terminal kinases (JNKs) and to pharmaceutical compositions comprising said compounds.
Condividi questo sito sui social