Effettua una ricerca
Enza Lacivita
Ruolo
Professore Associato
Organizzazione
Università degli Studi di Bari Aldo Moro
Dipartimento
DIPARTIMENTO DI FARMACIA-SCIENZE DEL FARMACO
Area Scientifica
AREA 03 - Scienze chimiche
Settore Scientifico Disciplinare
CHIM/08 - Chimica Farmaceutica
Settore ERC 1° livello
Non Disponibile
Settore ERC 2° livello
Non Disponibile
Settore ERC 3° livello
Non Disponibile
N-formyl peptide receptors (FPRs) are G protein-coupled receptors (GPCRs) that play critical roles in inflammatory reactions, and FPR-specific interactions can possibly be used to facilitate the resolution of pathological inflammatory reactions. Recent studies indicated that FPRs have stereo-selective preference for chiral ligands. Here, we investigated the structure-activity relationship of 24 chiral ureidopropanamides, including previously reported compounds PD168368/PD176252 and their close analogs, and used molecular modeling to define chiral recognition by FPR2. Unlike previously reported 6-methyl-2,4-disubstituted pyridazin-3(2H)-ones, whose R-forms preferentially activated FPR1/FPR2, we found that four S-enantiomers in the seven ureidopropanamide pairs tested preferentially activated intracellular Ca(2+) flux in FPR2-transfected cells, while the R-counterpart was more active in two enantiomer pairs. Thus, active enantiomers of FPR2 agonists can be in either R- or S-configurations, depending on the molecular scaffold and specific substituents at the chiral center. Using molecular modeling approaches, including field point methodology, homology modeling, and docking studies, we propose a model that can explain stereoselective activity of chiral FPR2 agonists. Importantly, our docking studies of FPR2 chiral agonists correlated well with the FPR2 pharmacophore model derived previously. We conclude that the ability of FPR2 to discriminate between the enantiomers is the consequence of the arrangement of the three asymmetric hydrophobic subpockets at the main orthosteric FPR2 binding site with specific orientation of charged regions in the subpockets.
IMPORTANCE OF THE FIELD: The 5-HT(7) receptors are discretely localized within the CNS (thalamus, hypothalamus, limbic and cortical regions). The 5-HT(7) receptors are also present in smooth muscle cells from blood vessels and have been reported in gastrointestinal tract as well as in rat lumbar dorsal root and sympathetic ganglia. The 5-HT(7) receptors have been implicated in depression, disorders related to circadian rhythms, pain and migraine. Thus, there is a great interest in developing potent and selective 5-HT(7) receptor modulators. AREAS COVERED IN THIS REVIEW: This review article highlights the research advances published in the patent literature between January 2004 and December 2009, giving emphasis to the medicinal chemist's standpoint. WHAT THE READER WILL GAIN: Readers will rapidly gain an overview of the various 5-HT(7) receptor modulators reported in the patent literature in the past 6 years. Furthermore, the readers will learn which structure type can interact with 5-HT(7) receptor and also the different companies that are the main players in the field. TAKE HOME MESSAGE: Although no 5-HT(7) modulator has entered clinical trials, the development and future use of different agonists and antagonists suitable for use in vivo seem very promising
Activatable fluorescent probes share the unique feature of being turned on only under specific conditions: they are "silent" when not interacting with a specific target protein, microenvironment, or reactive species. Several activatable fluorescence probes have demonstrated their potential in cell biology study, disease study and diagnosis, and even in the rapidly expanding field of image-guided surgery. In this review, we will summarize progress in the design of activatable probes and their application in studying cell biology or in optical imaging. Some of the most effective examples of activatablefluorescent probes will be resented and their application will be discussed.
Recent studies have indicated that the serotonin receptor subtype 7 (5-HT7R) plays a crucial role in shaping neuronal morphology during embryonic and early postnatal life. Here we show that pharmacological stimulation of 5-HT7R using a highly selective agonist, LP-211, enhances neurite outgrowth in neuronal primary cultures from the cortex, hippocampus and striatal complex of embryonic mouse brain, through multiple signal transduction pathways. All these signaling systems, involving mTOR, the Rho GTPase Cdc42, Cdk5, and ERK, are known to converge on the reorganization of cytoskeletal proteins that subserve neurite outgrowth. Indeed, our data indicate that neurite elongation stimulated by 5-HT7R is modulated by drugs affecting actin polymerization. In addition, we show, by 2D Western blot analyses, that treatment of neuronal cultures with LP-211 alters the expression profile of cofilin, an actin binding protein involved in microfilaments dynamics. Furthermore, by using microfluidic chambers that physically separate axons from the soma and dendrites, we demonstrate that agonist-dependent activation of 5-HT7R stimulates axonal elongation. Our results identify for the first time several signal transduction pathways, activated by stimulation of 5-HT7R, that converge to promote cytoskeleton reorganization and consequent modulation of axonal elongation. Therefore, the activation of 5-HT7R might represent one of the key elements regulating CNS connectivity and plasticity during development.
Background: Fragile X syndrome (FXS) is a genetic cause of intellectual disability and autism. Fmr1 knockout (Fmr1KO) mice, an animal model of FXS, exhibit spatial memory impairment and synapse malfunctioning in the hippocampus, with abnormal enhancement of long-term depression mediated by metabotropic glutamate receptors (mGluR-LTD). The neurotransmitter serotonin (5-HT) modulates hippocampal-dependent cognitive functions through 5-HT1A and 5-HT7 receptors, respectively impairing and improving learning; the underlying mechanisms are unknown. Methods: we used electrophysiology to test the effects of 5-HT on mGluR-LTD in wild-type and Fmr1KO mice, and immunocytochemistry and biotinylation assay to study related changes of GluR2 AMPA receptor subunit surface expression. Results: application of 5-HT or 8-OH-DPAT (a mixed 5-HT1A/5-HT7 agonist) reversed mGluR-LTD induced by DHPG, a group-I mGluR agonist, on CA1 pyramidal neurons in hippocampal slices. Reversal of mGluR-LTD by 8-OH-DPAT persisted in the presence of the 5-HT1A receptor antagonist WAY- 100635, was abolished by SB-269970 (5-HT7 receptor antagonist) and was mimicked by LP-211, a novel selective 5-HT7 receptor agonist. Consistently, 8-OH-DPAT decreased DHPG-mediated reduction of GluR2 surface expression in hippocampal slices and in cultured hippocampal neurons, an effect mimicked by LP-211 and blocked by SB-269970. In Fmr1KO mice, mGluR-LTD was abnormally enhanced; similarly to wild-type, 8-OH-DPAT reversed mGluR-LTD and decreased DHPG-induced reduction of surface AMPA receptors, an effect antagonized by SB-269970. Conclusions: 5-HT7 receptor activation reverses mGluR-induced AMPA receptor internalization and LTD both in wild-type and in Fmr1KO mice, correcting excessive mGluR-LTD. Therefore, selective activation of 5-HT7 receptors may represent a novel strategy in the therapy of FXS.
1-Cyclohexyl-4-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)propyl]piperazine 1 (PB28) represents an excellent lead candidate for therapeutic and/or diagnostic applications in oncology. However, because its utility is limited by its relatively high degree of lipophilicity, novel analogues of 1 with reduced lipophilic character were designed by substituting methylene groups with more polar functional groups in the propylene linker and at the tetralin C4 position. For the chiral analogues, separate enantiomers exhibited substantial and roughly equal affinities within a given receptor subtype, with the greatest difference observed for compound 9 at σ1 (7.5-fold; (-)-(S)-9 Ki=94.6 nM, (þ)-(R)-9 Ki=12.6 nM). Compound (-)-(S)-9 was also found to be the most σ2-selective agent (σ2 Ki=5.92 nM), to possess a lipophilicity consistent with entry into tumor cells (log D7.4 = 2.38), and to show minimal antiproliferative activity. However, (-)-(S)-9 exhibited moderate activity (EC50= 8.1 μM) at the P-gp efflux pump.
Here we describe the design, synthesis, and evaluation of physicochemical and pharmacological properties of D(4) dopamine receptor ligands related to N-[2-[4-(4-chlorophenyl)piperazin-1-yl]ethyl]-3-methoxybenzamide (2). Structural features were incorporated to increase affinity for the target receptor, to improve selectivity over D(2) and σ(1) receptors, to enable labeling with carbon-11 or fluorine-18, and to adjust lipophilicity within the range considered optimal for brain penetration and low nonspecific binding. Compounds 7 and 13 showed the overall best characteristics: nanomolar affinity for the D(4) receptor, >100-fold selectivity over D(2) and D(3) dopamine receptors, 5-HT(1A), 5-HT(2A), and 5-HT(2C) serotonin receptors and σ(1) receptors, and log P = 2.37-2.55. Following intraperitoneal administration in mice, both compounds rapidly entered the central nervous system. The methoxy of N-[2-[4-(3-cyanopyridin-2-yl)piperazin-1-yl]ethyl]-3-methoxybenzamide (7) was radiolabeled with carbon-11 and subjected to PET analysis in non-human primate. [(11)C]7 time-dependently accumulated to saturation in the posterior eye in the region of the retina, a tissue containing a high density of D(4) receptors.
We report here the results of studies aimed to investigate the involvement of serotonin receptor 7 subtype (5-HT7-R) in the modulation of emotional response in Naples High-Excitability (NHE) rat, a validated model for hyperactivity and impaired attention. A range of dosages (0.0, 0.125, 0.250, or 0.500 mg/kg) of LP-211, a selective agonist of 5-HT7-Rs, has been evaluated in animals at different age (adolescence and adulthood). Male NHE and random bred (NRB) control rats were tested in an Elevated Zero-Maze (EZM) after LP-211 treatment in two different regimens: at the issue of adolescent, subchronic exposure (14 intraperitoneal [i.p.] injections, once/day, pnd 31-44, tested on pnd 45-Exp. 1) or as adult, acute effect (15 min after i.p. injection-Exp. 2). Adolescent, subchronic LP-211 at 0.500 mg/kg dosage increased the frequency of head-dips only in NHE rats. Drug effect on time spent and entries in open EZM quadrants were revealed with adult, acute administration of 0.125 mg/kg LP-211 (both strains), indicating a tendency toward anxiolytic effects. In conclusion, data demonstrate that subchronic stimulation of 5-HT7-Rs during prepuberal period increases novelty-seeking/risk-taking propensity in NHE adults. These sequels are revealing increased disinhibition and/or motivation to explore in the NHE rats, which are characterized by a hyperactive dopaminergic system. These data may open new perspectives in studying mechanism of risk-seeking behavior.
The 5-HT(1A) receptor subtype is the most thoroughly studied serotonin receptor subtype. We report here the design, synthesis and characterization of two new fluorescent ligands for the 5-HT(1A) receptor. The new 1-arylpiperazine-based red-emitting fluorescent compound 6 displayed good binding affinity at the 5-HT(1A) receptor (K(i)=35 nM) and was able to label specifically the human 5-HT(1A) receptor stably expressed in CHO cells visualized using confocal laser scanning microscopy.
The D4 dopamine receptor belongs to the D2 -like family of dopamine receptors, and its exact regional distribution in the central nervous system is still a matter of considerable debate. The availability of a selective radioligand for the D4 receptor with suitable properties for positron emission tomography (PET) would help resolve issues of D4 receptor localization in the brain, and the presumed diurnal change of expressed protein in the eye and pineal gland. We report here on in vitro and in vivo characteristics of the high-affinity D4 receptor-selective ligand N-{2-[4-(3-cyanopyridin-2-yl)piperazin-1-yl]ethyl}-3-[(11) C]methoxybenzamide ([(11) C]2) in rat. The results provide new insights on the in vitro properties that a brain PET dopamine D4 radioligand should possess in order to have improved in vivo utility in rodents.
OBJECTIVE: To explore whether pharmacological stimulation of the 5-hydroxytryptamine(7) (5-HT(7) ) receptor modulates Fos-like immunoreactivity in the trigeminal nucleus caudalis of rats. BACKGROUND: The serotonin 5-HT(7) receptor was proposed to be involved in migraine pathogenesis and evidence suggests it plays a role in peripheral nociception and hyperalgesia through an action on sensory afferent neurons. METHODS: The potential activating or sensitizing role of 5-HT(7) receptors on trigeminal sensory neurons, as visualized by Fos-like immunoreactivity in the superficial layers of the trigeminal nucleus caudalis in rats, was investigated using the 5-HT(7) receptor agonist, LP-211, in the absence and the presence of intracisternal capsaicin, respectively. The agonist effect was characterized with the 5-HT(7) receptor antagonist, SB-656104. Male Wistar rats received a subcutaneous injection of LP-211, SB-656104, and SB-656104 + LP-211. They were then anesthetized and prepared to receive an intracisternal injection of capsaicin or its vehicle. Animals were perfused and brains removed; sections of the brain stem from the area postrema to the CI level were obtained and processed for Fos immunohistochemistry. RESULTS: Capsaicin but not its vehicle induced Fos-like immunoreactivity within laminae I and II of trigeminal nucleus caudalis. Pretreatment with LP-211 had no effect on Fos-like immunoreactivity but strongly increased the response produced by capsaicin; this effect was abolished by SB-656104. Interestingly, capsaicin-induced Fos-like immunoreactivity was abolished by SB-656104 pretreatment thus suggesting involvement of endogenous 5-HT. CONCLUSIONS: Data suggest that 5-HT(7) receptors increase activation of meningeal trigeminovascular afferents and/or transmission of nociceptive information in the brain stem. This mechanism could be relevant in migraine and its prophylactic treatment.
Here we report the design, synthesis, and 5-HT7 receptor affinity of a set of 1-(3-biphenyl)- and 1-(2-biphenyl)piperazines. The effect on 5-HT7 affinity of various substituents on the second (distal) phenyl ring was analyzed. Several compounds showed 5-HT7 affinities in the nanomolar range and >100-fold selectivity over 5-HT1A and adrenergic α1 receptors. 1-[2-(4-Methoxyphenyl)phenyl]piperazine (9a) showed 5-HT7 agonist properties in a guinea pig ileum assay but blocked 5-HT-mediated cAMP accumulation in 5-HT7-expressing HeLa cells.
Rett syndrome (RTT) is a rare neurodevelopmental disorder, characterized by severe behavioral and physiological symptoms. Mutations in the methyl CpG binding protein 2 gene (MECP2) cause more than 95% of classic cases, and currently there is no cure for this devastating disorder. Recently we have demonstrated that specific behavioral and brain molecular alterations can be rescued in MeCP2-308 male mice, a RTT mouse model, by pharmacological stimulation of the brain serotonin receptor 7 (5-HT7R). This member of the serotonin receptor family-crucially involved in the regulation of brain structural plasticity and cognitive processes-can be stimulated by systemic repeated treatment with LP-211, a brain-penetrant selective 5-HT7R agonist. The present study extends previous findings by demonstrating that the LP-211 treatment (0.25 mg/kg, once per day for 7 days) rescues RTT-related phenotypic alterations, motor coordination (Dowel test), spatial reference memory (Barnes maze test) and synaptic plasticity (hippocampal long-term-potentiation) in MeCP2-308 heterozygous female mice, the genetic and hormonal milieu that resembles that of RTT patients. LP-211 also restores the activation of the ribosomal protein (rp) S6, the downstream target of mTOR and S6 kinase, in the hippocampus of RTT female mice. Notably, the beneficial effects on neurobehavioral and molecular parameters of a seven-day long treatment with LP-211 were evident up to 2 months after the last injection, thus suggesting long-lasting effects on RTT-related impairments. Taken together with our previous study, these results provide compelling preclinical evidence of the potential therapeutic value for RTT of a pharmacological approach targeting the brain 5-HT7R.
We have determined the pharmacological profile of the new serotonin 5-HT7 receptor agonist N- (4-cyanophenylmethyl)-4-(2-diphenyl)-1-piperazinehexanamide (LP-211). Radioligand binding assays were performed on a panel of 5-HT receptor subtypes. The compound was also evaluated in vivo by examining its effect on body temperature regulation in mice lacking the 5-HT7 receptor (5-HT7−/−) and their 5-HT7 +/+ sibling controls. Disposition studies were performed in mice of both genotypes. It was found that LP-211 was brain penetrant and underwent metabolic degradation to 1-(2-diphenyl)piperazine (RA- 7). In vitro binding assays revealed that RA-7 possessed higher 5-HT7 receptor affinity than LP-211 and a better selectivity profile over a panel of 5-HT receptor subtypes. In vivo it was demonstrated that LP- 211, and to a lesser degree RA-7, induced hypothermia in 5-HT7 +/+ but not in 5-HT7−/− mice. Our results suggest that LP-211 can be used as a 5-HT7 receptor agonist in vivo.
Bombesin receptor 2 (BB2) and integrin αvβ3 receptor are privileged targets for molecular imaging of cancer because of their overexpression in a number of tumor tissues. The most recent developments in heterodimer-based radiopharmaceuticals concern BB2- and integrin αvβ3-targeting compounds, consisting of bombesin (BBN) and cyclic arginine-glycine-aspartic acid peptides (RGD), connected through short length linkers. Molecular imaging probes based on RGD-BBN heterodimer design exhibit improved tumor targeting efficacy compared to the single-receptor targeting peptide monomers. However, their application in clinical study is restricted because of inefficient synthesis or unfavorable in vivo properties, which could depend on the short linker nature. Thus, the aim of the present study was to develop a RGD2-BBN heterotrimer, composed of (7-14)BBN-NH2 peptide (BBN) linked to the E[ c(RGDyK)]2 dimer peptide (RGD2), bearing the new linker type [Pro-Gly]12. The heterodimer E[c(RGDyK)]2-PEG3-Glu-(Pro-Gly)12-BBN(7-14)-NH2 (RGD2-PG12-BBN) was prepared through conventional solid phase synthesis, then conjugated with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) or 1,4,7-triazacyclononane-1-glutaric acid-4,7-diacetic acid (NODA-GA). In 64Cu labeling, the NODA-GA chelator showed superior radiochemical characteristics compared to DOTA (70% vs 40% yield, respectively). Both conjugates displayed dual targeting ability, showing good αvβ3 affinities and high BB2 receptor affinities which, in the case of the NODA-GA conjugate, were in the same range as the best RGD-BBN heterodimer ligands reported to date ( Ki = 24 nM). 64Cu-DOTA and 64Cu-NODA-GA probes were also found to be stable after 1 h incubation in mouse serum (>90%). In a microPET study in prostate cancer PC-3 xenograft mice, both probes showed low tumor uptake, probably due to poor pharmacokinetic properties in vivo. Overall, our study demonstrates that novel RGD-BBN heterodimer with long linker can be prepared and they preserve high binding affinities to BB2 and integrin αvβ3 receptor binding ability. The present study represents a step forward in the design of effective heterodimer or heterotrimer probes for dual targeting.
Despite the promising potentials of σ2 receptors in cancer therapy and diagnosis, there are still ambiguities related to the nature and physiological role of the σ2 protein. With the aim of providing potent and reliable tools to be used in σ2 receptor research, we developed a novel series of fluorescent σ2 ligands on the basis of our previous work, where high-affinity σ2 ligand 1-cyclohexyl-4-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)-n-propyl]piperazine (1, PB28) was used as the pharmacophore. Compared to the previous compounds, these novel ligands displayed improved fluorescence and σ2 binding properties, were σ2-specifically taken up by breast tumor cells, and were successfully employed in confocal microscopy. Compound 14, which was the best compromise between pharmacological and fluorescent properties, was successfully employed in flow cytometry, demonstrating its potential to be used as a tool in nonradioactive binding assays for studying the affinity of putative σ2 receptor ligands.
Here we report the synthesis, pharmacological and pharmacokinetic evaluation of a pilot set of compounds structurally related to the potent and selective 5-HT7 ligand LP-211. Among the studied compounds, N-pyridin-3-ylmethyl-3-[4-[2-(4-methoxyphenyl)phenyl]piperazin-1-yl]ethoxy]propanamide (4b) showed high affinity for 5-HT7 receptors (Ki=23.8nM), selectivity over 5-HT1A receptors (>50-fold), in vitro metabolic stability (82%) and weak interaction with P-glycoprotein (BA/AB=3.3). Compound 4b was injected ip in mice to preliminarily evaluate its distribution between blood and brain.
RATIONALE: The serotonin 7 receptor (5-HT7-R) is part of a neuro-transmission system with a proposed role in neural plasticity and in mood, cognitive or sleep regulation. OBJECTIVES: We investigated long-term consequences of sub-chronic treatment, during adolescence (43-45 to 47-49 days old) in rats, with a novel 5-HT7-R agonist (LP-211, 0 or 0.250 mg/kg/day). METHODS: We evaluated behavioural changes as well as forebrain structural/functional modifications by in vivo magnetic resonance (MR) in a 4.7 T system, followed by ex vivo histology. RESULTS: Adult rats pre-treated during adolescence showed reduced anxiety-related behaviour, in terms of reduced avoidance in the light/dark test and a less fragmented pattern of exploration in the novel object recognition test. Diffusion tensor imaging (DTI) revealed decreased mean diffusivity (MD) in the amygdala, increased fractional anisotropy (FA) in the hippocampus (Hip) and reduced axial (D||) together with increased radial (D⊥) diffusivity in the nucleus accumbens (NAcc). An increased neural dendritic arborization was confirmed in the NAcc by ex vivo histology. Seed-based functional MR imaging (fMRI) identified increased strength of connectivity within and between "limbic" and "cortical" loops, with affected cross-correlations between amygdala, NAcc and Hip. The latter displayed enhanced connections through the dorsal striatum (dStr) to dorso-lateral prefrontal cortex (dl-PFC) and cerebellum. Functional connection also increased between amygdala and limbic elements such as NAcc, orbito-frontal cortex (OFC) and hypothalamus. MR spectroscopy (1H-MRS) indicated that adolescent LP-211 exposure increased glutamate and total creatine in the adult Hip. CONCLUSIONS: Persistent MR-detectable modifications indicate a rearrangement within forebrain networks, accounting for long-lasting behavioural changes as a function of developmental 5-HT7-R stimulation
The invention relates to a new class of compounds able to bind with high affinity and selectivity the 5-HT7 receptor. The invention also relates to the utilization of such compounds as medicaments useful in the treatment and prevention of 5-HT7 receptor relating disorders of the central nervous system. The invention also relates to the isotopically labeled compounds for use in vivo diagnosis or imaging of a 5-HT7 condition.
A decrease in the activation threshold of primary sensory neurons to transient receptor potential V1 (TRPV1) stimulation by serotonin 5-HT7 receptors has been reported but no confirmation if this might translate into facilitation of neurogenic inflammation has been provided. We analysed the modulation of capsaicin (CAP)-induced neurogenic inflammation in the rat hind paw by the selective 5-HT7 receptor agonist, LP-44, and the involvement of calcitonin gen-related peptide (CGRP) in this effect. Animals received intra-plantar injections (30 μL) of vehicle, CAP (0.05%, 0.1% and 0.2%), LP-44 (7.5 and 15 nmol) and the combination of LP-44 + CAP; then, the time course of the inflammatory responses was measured. The effect of the 5-HT7 receptor antagonist, SB-269970 (3 mg/kg, s.c.), on responses produced by LP-44 alone and combined with CAP was tested. As expected, CAP produced concentration- and time-dependent inflammatory responses in the hind paw. Interestingly, LP-44 by itself also produced inflammation in a concentration- and time-dependent manner, and magnified CAP-induced responses. Systemic pre-treatment with SB-269970 significantly blunted LP-44 (15 nmol)-induced inflammation as well as magnified inflammatory responses produced by the combination of LP-44 (7.5 and 15 nmol) + CAP (0.1%) thus confirming the involvement of 5-HT7 receptors. Finally, the non-peptide CGRP receptor antagonist, BIBN4096 (3 mg/kg, s.c.), strongly inhibited the potentiated inflammatory responses induced by LP-44 (7.5 and 15 nmol) + CAP (0.1%) thus substantiating their neurogenic nature. Thus, sensitization of CAP-sensitive primary sensory neurons by 5-HT7 receptors may result in facilitation of neurogenic inflammation involving CGRP in the rat hind paw.
The cross-talk at the prefronto-striatal interface involves excitatory amino acids, different receptors, transducers and modulators. We investigated long-term effects of a prepuberal, subchronic 5-HT7-R agonist (LP-211) on adult behaviour, amino acids and synaptic markers in a model for Attention-Deficit/Hyperactivity Disorder (ADHD). Naples High Excitability rats (NHE) and their Random Bred controls (NRB) were daily treated with LP-211 in the 5th and 6th postnatal week. One month after treatment, these rats were tested for indices of activity, non selective (NSA), selective spatial attention (SSA) and emotionality. The quantity of L-Glutamate (L-Glu), L-Aspartate (L-Asp) and L-Leucine (L-Leu), dopamine transporter (DAT), NMDAR1 subunit and CAMKIIα, were assessed in prefrontal cortex (PFC), dorsal (DS) and ventral striatum (VS), for their role in synaptic transmission, neural plasticity and information processing. Prepuberal LP-211 (at lower dose) reduced horizontal activity and (at higher dose) increased SSA, only for NHE but not in NRB rats. Prepuberal LP-211 increased, in NHE rats, L-Glu in the PFC and L-Asp in the VS (at 0.250 mg/kg dose), whereas (at 0.125 mg/kg dose) it decreased L-Glu and L-Asp in the DS. The L-Glu was decreased, at 0.125 mg/kg, only in the VS of NRB rats. The DAT levels were decreased with the 0.125 mg/kg dose (in the PFC), and increased with the 0.250 mg/kg dose (in the VS), significantly for NHE rats. The basal NMDAR1 level was higher in the PFC of NHE than NRB rats; LP-211 treatment (at 0.125 mg/kg dose) decreased NMDAR1 in the VS of NRB rats. This study represents a starting point about the impact of developmental 5-HT7-R activation on neuro-physiology of attentive processes, executive functions and their neural substrates.
The serotonin 7 (5-HT7) receptor was the last serotonin receptor subtype to be discovered in 1993. This receptor system has been implicated in several central nervous system (CNS) functions, including circadian rhythm, rapid eye movement sleep, thermoregulation, nociception, memory and neuropsychiatric symptoms and pathologies, such as anxiety, depression and schizophrenia. In 1999, medicinal chemistry efforts led to the identification of SB-269970, which became the gold standard selective 5-HT7 receptor antagonist, and later of various selective agonists such as AS-19, LP-44, LP-12, LP-211 and E-55888. In this review, we summarize the preclinical pharmacological studies performed using these agonists, highlighting their strengths and weaknesses. The data indicate that 5-HT7 receptor agonists can have neuroprotective effects against N-methyl-d-aspartate-induced toxicity, modulate neuronal plasticity in rats, enhance morphine-induced antinociception and alleviate hyperalgesia consecutive to nerve lesion in neuropathic animals
Since its discovery in the 1940s in serum, the mammalian intestinal mucosa, and in the central nervous system, serotonin (5-HT) has been shown to be involved in virtually all cognitive and behavioral human functions, and alterations in its neurochemistry have been implicated in the etiology of a plethora of neuropsychiatric disorders. The cloning of 5-HT receptor subtypes has been of importance in enabling them to be classified as specific protein molecules encoded by specific genes. The 5-HT7 receptor is the most recently classified member of the serotonin receptor family. Since its identification, it has been the subject of intense research efforts driven by its presence in functionally relevant regions of the brain. The availability of some selective antagonists and agonists, in combination with genetically modified mice lacking the 5-HT7 receptor, has allowed for a better understanding of the pathophysiological role of this receptor. This paper reviews data on localization and pharmacological properties of the 5-HT7 receptor, and summarizes the results of structure-activity relationship studies aimed at the discovery of selective 5-HT7 receptor ligands. Additionally, an overview of the potential therapeutic applications of 5-HT7 receptor agonists and antagonists in central nervous system disorders is presented.
The mammalian bombesin receptor family comprises three G protein-coupled receptors: the neuromedin B receptor, the gastrin-releasing peptide receptor (BB2), and the bombesin receptor subtype 3. BB2 receptor plays a role in gastrointestinal functions; however, at present the role of this subtype in physiological and pathological conditions is unknown due to the lack of specific binders for all subclasses of bombesin receptors. Here, we present a study focused on the properties of the peptoid bombesin antagonist called PD176252, and other structural analogues with the aim to elucidate causes of their different affinity towards the BB2 receptor. By means of computational techniques, based on QSAR, docking and homology building, supported by experimental data (X-ray diffraction and NMR spectroscopy) fresh insights on binding modes of this class of biological targets were achieved.
Identifying desired interactions with a target receptor is often the first step when designing new active compounds. However, attention should also be focused on contacts with other proteins that result in either selective or polypharmacological compounds. Here, the search for the structural determinants of selectivity between selected serotonin receptor subtypes was carried out. Special attention was focused on 5-HT7R and the cross-interactions between its ligands and the 5-HT1AR, 5-HT1BR, 5-HT2AR, 5-HT2BR, and 5-HT6R subtypes. Selective and non-selective compounds for each pair of 5-HT7/5-HTx receptors were docked to the respective 5-HTR homology models and 5-HT1B/5-HT2BR crystal structures. The contacts present in the ligand-receptor complexes obtained by docking were characterized by the structural interaction fingerprint and statistically analyzed in terms of their frequency. The results allowed for the identification of amino acids that discriminate between selective and non-selective compounds for each 5-HT7/5-HTx receptor pair, which was further compared with available mutagenesis data. Interaction pattern characteristics for compounds with particular activity profiles can constitute the basis for the coherent selectivity theory within a considered set of proteins, supporting the ongoing development of new ligands targeting these receptors. The in silico results were used to analyze prospective virtual screening results towards the 5-HT7 receptor in which compounds of different chemotypes to known 5-HT7R ligands, with micromolar level activities were identified. The findings in this study not only confirm the legitimacy of the approach but also constitute a great starting point for further studies on 5-HT7R ligands selectivity.
Serotonin 5-HT7 receptor (5-HT7R) has been the subject of intense research efforts because of its presence in brain areas such as the hippocampus, hypothalamus, and cortex. Preclinical data link the 5-HT7R to a variety of central nervous system processes including the regulation of circadian rhythms, mood, cognition, pain processing, and mechanisms of addiction. 5-HT7R blockade has antidepressant effects and may ameliorate cognitive deficits associated with schizophrenia. 5-HT7R has been recently shown to modulate neuronal morphology, excitability, and plasticity, thus contributing to shape brain networks during development and to remodel neuronal wiring in the mature brain. Therefore, the activation of 5-HT7R has been proposed as a therapeutic approach for neurodevelopmental and neuropsychiatric disorders associated with abnormal neuronal connectivity. This Perspective celebrates the silver jubilee of the discovery of 5-HT7R by providing a survey of recent studies on the medicinal chemistry of 5-HT7R ligands and on the neuropharmacology of 5-HT7R.
Gastrin-releasing peptide receptors (GRP-Rs, also known as bombesin 2 receptors) are overexpressed in a variety of human cancers, including prostate cancer, and therefore they represent a promising target for in vivo imaging of tumors using positron emission tomography (PET). Structural modifications of the non-peptidic GRP-R antagonist PD-176252 ((S)-1a) led to the identification of the fluorinated analog (S)-3-(1H-indol-3-yl)-N-[1-[5-(2-fluoroethoxy)pyridin-2-yl]cyclohexylmethyl]-2-methyl-2-[3-(4-nitrophenyl)ureido]propionamide ((S)-1m) that showed high affinity and antagonistic properties for GRP-R. This antagonist was stable in rat plasma and towards microsomal oxidative metabolism in vitro. (S)-1m was successfully radiolabeled with fluorine-18 through a conventional radiochemistry procedure. [18F](S)-1m showed high affinity and displaceable interaction for GRP-Rs in PC3 cells in vitro.
In the search for a novel serotonin 7 (5-HT7) receptor PET radioligand we synthesized and evaluated a new series of biphenylpiperazine derivatives in vitro. Among the studied compounds, (R)-1-[4-[2-(4-methoxyphenyl)phenyl]piperazin-1-yl]-3-(2-pyrazinyloxy)-2-propanol ((R)-16), showed the best combination of affinity, selectivity, and lipophilicity, and was thus chosen for carbon-11 labelling and evaluation in pigs. After intravenous injection, [(11)C](R)-16 entered the pig brain and displayed reversible tracer kinetics. Pretreatment with the 5-HT7 receptor selective antagonist SB-269970 (1) resulted in limited decrease in the binding of [(11)C](R)-16, suggesting that this radioligand is not optimal for imaging the brain 5-HT7 receptor in vivo but it may serve as a lead compound for the design of novel 5-HT7 receptor PET radioligands.
Introduction: The 5-HT1A receptors are implicated in mood disorders (anxiety, depression), in cognition, and in modulation of pain. Nearly 30 years of research in this field, there is still interest in developing new chemical entities capable of 5-HT1A receptor activation or blockade. 10 Areas covered: This review article will highlight and review the research advances published in the patent literature between January 2007 and December 2011, giving emphasis to the medicinal chemist’s standpoint. Literature search methodology included search in Scifinder and PubMed Databases and browsing clinicaltrials.gov website. 15 Expert opinion: Almost no new therapeutic applications have been proposed for molecules targeting the 5-HT1A receptor, during the years covered by the present review. The discovery that stimulation of 5-HT1A receptor can promote neurogenesis will likely renew the interest for selective 5-HT1A receptor agonists as therapeutics to replace neural populations damaged by disease 20 or injury.
Serotonin 7 (5-hydroxytryptamine7 or 5-HT7) is the most recently identified serotonin receptor. It is involved in mood disorders and is studied as a target for antidepressants. Here, we report on the structural manipulation of the 5-HT7 receptor ligand 4-[2-(3-methoxyphenyl)ethyl]-1-(2-methoxyphenyl)piperazine (1a) aimed at obtaining 5-HT7 receptor ligands endowed with good in vitro metabolic stability. A set of N-[3-methoxyphenyl)ethyl-substituted] 1-arylpiperazine, 4-arylpiperidine and 1-aryl-4-aminopiperidine was synthesized and tested in radioligand binding assays at human cloned 5-HT7 and 5-HT1A receptors. In vitro metabolic stability of the target compounds was assessed after incubation with rat hepatic S9 microsomal fraction. Among the new compounds, 1-(2-biphenyl)-4-[2-(3-methoxyphenyl)ethyl]piperazine (1d) and 4-(2-biphenyl)-1-[2-(3-methoxyphenyl)ethyl]piperidine (2d) showed a good compromise between affinity at 5-HT7 receptor (K i = 7.5 nM and 13 nM, respectively) and in vitro metabolic stability (26 and 65 % recovery of parent compound, respectively) but were poorly selective over 5-HT1A receptor.
A series of N-(1,2,3,4-tetrahydronaphthalen-1-yl)-4-aryl-1-piperazinealkylamides was prepared and their affinity for serotonin 5-HT7, 5-HT1A, and 5-HT2A receptors was measured using in vitro binding assays. In relation to 5-HT7 receptor affinity, receptor binding studies indicated that: (i) the optimal alkyl chain length was five methylenes; (ii) an unsubstituted 1,2,3,4-tetrahydronaphthalenyl nucleus was selected for further substitutions; and (iii) the substitution pattern of the aryl ring linked to the piperazine ring played a significant role. Several compound with high affinity for 5-HT7 receptors were identified.; Among them, 4-(2-methoxyphenyl)-N-(1,2,3,4-tetrahydronaphthalen-1-yl)-1-piperazinehexanamide (28), 4-(2-acetylphenyl)-N-(1,2,3,4-tetrahydronaphthalen-1-yl)-1-piperazinehexanamide (34), 4-(2-methylthiophenyl)-N-(1,2,3,4-tetrahydronaphthalen-1-yl)-1-piperazinehexanamide (44), 4-(2-hydroxyphenyl)-N-(1,2,3,4-tetrahydronaphthalen-1-yl)-1-piperazinehexanamide (46), 4-(2-methylphenyl)-N-(1,2,3,4-tetrahydronaphthalen-1-yl)-1-piperazinehexanamide (49) were assayed for the 5-HT7 receptor mediated relaxation of substance P-induced guinea-pig ileum contraction. Compounds 28, 44, and 49 behaved as full agonists, compound 34 as a partial agonist, whereas derivative 46 acted as an antagonist.
The invention relates to a new class of compounds able to inhibit with high affinity and selectivity the 5-HT7 receptor. The invention also relates to the utilization of such compounds as medicaments useful in the treatment and prevention of 5-HT7 receptor relating disorders of the central nervous system. The invention also relates to the isotopically labeled compounds for use in vivo diagnosis or imaging of a 5-HT7 condition.
Condividi questo sito sui social