Effettua una ricerca
Giorgio Mori
Ruolo
Professore Associato
Organizzazione
Università degli Studi di Foggia
Dipartimento
Dipartimento di Medicina Clinica e Sperimentale
Area Scientifica
Area 05 - Scienze biologiche
Settore Scientifico Disciplinare
BIO/17 - Istologia
Settore ERC 1° livello
LS - Life sciences
Settore ERC 2° livello
LS3 Cellular and Developmental Biology: Cell biology, cell physiology, signal transduction, organogenesis, developmental genetics, pattern formation in plants and animals, stem cell biology
Settore ERC 3° livello
LS3_2 Cell biology and molecular transport mechanisms
The idea of incorporating a mouthrinse with normal tooth brushing could be a useful adjunct to oral hygiene. Despite the principle nature of the toothpaste vehicle, most alcohol-based chemical plaque-control agents have been evaluated and later formulated in the mouthrinse vehicle. The current study was aimed to investigate the persistence of antimicrobial action and plaque inhibitory properties of a new alcohol-free mouthrinse when compared with positive control, chlorhexidine 0.12% and placebo control, physiologic saline solution mouthrinses. The evaluation of the antimicrobial activity was performed by saliva samples collected during the 3 days of usage. The results of this study indicate that this new oral rinse has an equivalent plaque inhibitory action to chlorhexidine, and the plaque inhibitory action of the rinse appears to be derived from a persistence of antimicrobial action in the mouth. Furthermore, no side effects were reported during the study, and the additional benefit of no alcohol presence in the rinse solution.
Abstract BACKGROUND/OBJECTIVES: Calcific aortic valvular disease (CAVD) is an actively regulated process characterized by the activation of specific osteogenic signaling pathways and apoptosis. We evaluated the involvement in CAVD of the TNF-related apoptosis-inducing ligand (TRAIL), an apoptotic molecule which induces apoptosis by interacting with the death receptor (DR)-4 and DR5, and whose activity is modulated by the decoy receptor (DcR)-1 and DcR2. METHODS: Sections of calcific and normal aortic valves, obtained at surgery time, were subjected to immunohistochemistry and confocal microscopy for TRAIL immunostaining. Valvular interstitial cells (VICs) isolated from calcific (C-VICs) and normal (N-VICs) aortic valves were investigated for the gene and protein expression of TRAIL receptors. Cell viability was assayed by MTT. Von Kossa staining was performed to verify C-VIC ability to produce mineralized nodules. TRAIL serum levels were detected by ELISA. RESULTS: Higher levels of TRAIL were detected in calcific aortic valves and in sera from the same patients respect to controls. C-VICs express significantly higher mRNA and protein levels of DR4, DR5, DcR1, DcR2 and Runx2 compared to N-VICs. C-VICs and N-VICs, cultured in osteogenic medium, express significantly higher mRNA levels of DR4, Runx2 and Osteocalcin compared to baseline. C-VICs and N-VICs were sensitive to TRAIL-apoptotic effect at baseline and after osteogenic differentiation, as demonstrated by MTT assay and caspase-3 activation. TRAIL enhanced mineralized matrix nodule synthesis by C-VICs cultured in osteogenic medium. CONCLUSIONS: TRAIL is characteristically present within calcific aortic valves, and mediates the calcification of aortic valve interstitial cells in culture through mechanism involving apoptosis.
Scientists have recently focused their attention on adult stem cells as new and more effective treatments for different diseases and disabilities. In fact, it is known that stem cells are capable of renewing themselves and that they can generate multiple cell types. Today, there is new evidence that stem cells are present in far more tissues and organs than once thought and that these cells are capable of developing into more kinds of cells than previously imagined. In this chapter, we focus the attention on teeth as source of stem cells. In particular, we describe the characteristic of the different types of dental stem cells and their use in tissue engineering.
The skeleton is a relatively dynamic tissue that undergoes significant modifications throughout the life. Its formation starts at the fetal stage and evolves post-natally through modeling and remodeling processes that permit skeletal mass buildup and maintenance
Dental pulp stem cells (DPSCs) are an adult stem cells population with high proliferative potential and the ability to differentiate in many cell types, and this has led scientists to consider these cells to be an alternative source of postnatal stem cells comparable to mesenchymal stem cells from bone marrow. In this work, we studied the osteoblastic phenotype developed by DPSCs cultured in osteogenic medium. In particular, we analyzed the expression of the typical osteoblast markers such as alkaline phosphatase, collagen type I, osteocalcin, osteopontin, as well as mineralized matrix production. Furthermore, the gene expression during DPSC differentiation into osteoblastic cells was studied by microarray technology. Using microarray and reverse transcriptase–polymerase chain reaction analysis, we found that IGFBP-5, JunB, and NURR1 genes are upregulated during the differentiation of DPSCs. These data indicate that opportunely differentiated DPSCs show a correct osteoblastic phenotype. Therefore, during the osteoblastic differentiation process, genes such as IGFBP-5, JunB, and NURR1 significantly increase their expression.
Functionally Graded Scaffolds (FGSs) are porous biomaterials where porosity changes in space with a specific gradient. In spite of their wide use in bone tissue engineering, possible models that relate the scaffold gradient to the mechanical and biological requirements for the regeneration of the bony tissue are currently missing. In this study we attempt to bridge the gap by developing a mechanobiology-based optimization algorithm aimed to determine the optimal graded porosity distribution in FGSs. The algorithm combines the parametric finite element model of a FGS, a computational mechano-regulation model and a numerical optimization routine. For assigned boundary and loading conditions, the algorithm builds iteratively different scaffold geometry configurations with different porosity distributions until the best microstructure geometry is reached, i.e. the geometry that allows the amount of bone formation to be maximized. We tested different porosity distribution laws, loading conditions and scaffold Young's modulus values. For each combination of these variables, the explicit equation of the porosity distribution law-i.e the law that describes the pore dimensions in function of the spatial coordinates-was determined that allows the highest amounts of bone to be generated. The results show that the loading conditions affect significantly the optimal porosity distribution. For a pure compression loading, it was found that the pore dimensions are almost constant throughout the entire scaffold and using a FGS allows the formation of amounts of bone slightly larger than those obtainable with a homogeneous porosity scaffold. For a pure shear loading, instead, FGSs allow to significantly increase the bone formation compared to a homogeneous porosity scaffolds. Although experimental data is still necessary to properly relate the mechanical/biological environment to the scaffold microstructure, this model represents an important step towards optimizing geometry of functionally graded scaffolds based on mechanobiological criteria.
Regenerative medicine aims to translate the regeneration of tissues and organs into clinical application. Numerous studies have reported beneficial effects of Adult stem cells therapy in the treatment of disease and disabilities. New sources of mesenchymal stem cells (MSCs) are emerging in adult organisms, and dental tissues, that are easily accessible, have been identified as a source of postnatal MSCs capable of self-renewal and multipotency. Dental Follicle Stem Cells (DFSCs) isolated from tooth buds of healthy paediatric patients showed ≥95% expression of stemness makers (CD73, CD90, CD146, CD44, CD105, and HLA-I) [1]. Moreover DFSCs differentiated into osteoblast-like cells, produced mineralized matrix nodules and expressed typical osteoblastic markers. Cell interactions with extracellular matrix (ECM) and neighbor cells are critical for tissue morphogenesis and architecture, and are mediated by two classes of adhesion molecules, respectively Integrins and Cadherins, which also act intracellularly by modulating crucial pathways of proliferation and differentiation. Thus, in this study, DFSCs were characterized for the expression of adhesion molecules Cadherins and Integrins. In basal conditions DFSCs expressed higher levels of N-Cadherin and Cadherin-11 in comparison to E-Cadherin and P-Cadherin, which were low expressed. The examined Cadherins showed different behaviours during DFSCs osteogenic differentiation: N-cadherin expression was high during the first steps, while decreased at the later times; Cadherin-11 progressively increased; E-Cadherin and P-Cadherin did not change a Cadherin profile reflecting the osteoblastic commitment of the cells. DFSCs expressed the Integrin subunits alpha V, beta 3, alpha 5, and beta 1 in basal undifferentiated conditions but their expression increased time-dependently under osteogenic treatment. In addition we found that the subunits alpha V and beta 3 associated and formed the functional integrin, which localized at the focal adhesion in response to osteogenic trigger; similarly, alpha 5 and beta 1 subunits were found to associate and localize at the cell borders mostly in differentiated cells. Finally we found that osteogenic differentiation of DFSCs was prompted out by seeding the cells on ECM protein coated surfaces. Functional tissue engineering for bone regeneration requires the appropriate combination of MSCs with biocompatible scaffolds, thus acting on cell surface and ECM molecules could optimize osteogenic differentiation of MSCs and contribute to the successful regeneration of damaged bone tissue.
We previously showed that Irisin, a myokine released from skeletal muscle after physical exercise, plays a central role in the control of bone mass. Here we report that treatment with recombinant Irisin prevented bone loss in hind-limb suspended mice when administered during suspension (preventive protocol) and induced recovery of bone mass when mice were injected after bone loss due to a suspension period of 4 weeks (curative protocol). MicroCT analysis of femurs showed that r-Irisin preserved both cortical and trabecular bone mineral density, and prevented a dramatic decrease of the trabecular bone volume fraction. Moreover, r-Irisin protected against muscle mass decline in the hind-limb suspended mice, and maintained the fiber cross-sectional area. Notably, the decrease of myosin type II expression in unloaded mice was completely prevented by r-Irisin administration. Our data reveal for the first time that Irisin retrieves disuse-induced bone loss and muscle atrophy. These findings may lead to development of an Irisin-based therapy for elderly immobile osteoporotic and physically disable patients, and might represent a countermeasure for astronauts subjected to microgravity-induced bone and muscle losses.
It has been recently demonstrated that exercise activity increases the expression of the myokine Irisin in skeletal muscle, which is able to drive the transition of white to brown adipocytes, likely following a phenomenon of transdifferentiation. This new evidence supports the idea that muscle can be considered an endocrine organ, given its ability to target adipose tissue by promoting energy expenditure. In accordance with these new findings, we hypothesized that Irisin is directly involved in bone metabolism, demonstrating its ability to increase the differentiation of bone marrow stromal cells into mature osteoblasts. Firstly, we confirmed that myoblasts from mice subjected to 3 weeks of free wheel running increased Irisin expression compared to nonexercised state. The conditioned media (CM) collected from myoblasts of exercised mice induced osteoblast differentiation in vitro to a greater extent than those of mice housed in resting conditions. Furthermore, the differentiated osteoblasts increased alkaline phosphatase and collagen I expression by an Irisin-dependent mechanism. Our results show, for the first time, that Irisin directly targets osteoblasts, enhancing their differentiation. This finding advances notable perspectives in future studies which could satisfy the ongoing research of exercise-mimetic therapies with anabolic action on the skeleton.
Subjects with hypergonadotropic hypogonadism due to Turner's syndrome show low cortical mineral density, osteoporosis and risk of fractures. It is not clear if this bone fragility derives from chromosomal abnormalities or is the result of inadequate bone formation due to estrogen deficiency. The aim of this study was to investigate the cellular mechanisms underlying bone fragility in subjects with Turner's syndrome before induction of puberty and after hormonal replacement therapy (HRT). For this purpose, we have evaluated the osteoclastogenic potential of non-fractioned and T-cell depleted cultures of peripheral blood mononuclear cells (PBMCs) belonging to girls with Turner's syndrome who had not been treated with HRT yet, girls and young women who were on HRT and age-matched controls. Untreated subjects showed high FSH serum levels, whereas the other subjects displayed normal FSH serum levels. T-cell immunophenotype was analyzed through flow cytometry. Biochemical and DXA analyses were performed. Spontaneous osteoclastogenesis in non-fractioned and T-cell depleted cultures of PBMC belonging to girls with high FSH levels was more evident than in cultures of subjects with normal FSH levels. In the former, osteoclastogenesis was sustained by monocytes expressing high levels of c-fms, TNF-α and RANK, and T-cells producing high RANKL and TNF-α; in the latter it was supported by T-cells expressing high RANKL levels. CD4(+)CD25(high) T-cells were reduced in all subjects, whereas CD3(+)/CD16(+)/CD56(+) NKT-cells were increased in those with high FSH levels. High RANKL and CTX levels were detected in the sera. Bone impairment was already detectable by DXA in subjects aged under 10, although it became more evident with aging. In conclusion, our results demonstrated that bone fragility in subjects with Turner's syndrome is associated to enhanced osteoclastogenesis. This process seems to be due to high FSH serum levels before HRT, whereas it is caused by high RANKL during HRT.
Wingless-type (Wnt) signaling through the secretion of Wnt inhibitors Dickkopf1, soluble frizzled-related protein-2 and -3 has a key role in the decreased osteoblast (OB) activity associated with multiple myeloma (MM) bone disease. We provide evidence that another Wnt antagonist, sclerostin, an osteocyte-expressed negative regulator of bone formation, is expressed by myeloma cells, that is, human myeloma cell lines (HMCLs) and plasma cells (CD138+ cells) obtained from the bone marrow (BM) of a large number of MM patients with bone disease. We demonstrated that BM stromal cells (BMSCs), differentiated into OBs and co-cultured with HMCLs showed, compared with BMSCs alone, reduced expression of major osteoblastic-specific proteins, decreased mineralized nodule formation and attenuated the expression of members of the activator protein 1 transcription factor family (Fra-1, Fra-2 and Jun-D). Moreover, in the same co-culture system, the addition of neutralizing anti-sclerostin antibodies restored OB functions by inducing nuclear accumulation of β-catenin. We further demonstrated that the upregulation of receptor activator of nuclear factor κ-B ligand and the downregulation of osteoprotegerin in OBs were also sclerostin mediated. Our data indicated that sclerostin secretion by myeloma cells contribute to the suppression of bone formation in the osteolytic bone disease associated to MM.
Sclerostin, an osteocyte-expressed negative regulator of bone formation, is one of the inhibitors of Wnt signalling which is a critical pathway in the correct process of osteoblast differentiation. It has been demonstrated that Wnt signalling through the secretion of Wnt inhibitors, such as DKK1, sFRP-2 and - 3, plays a key role in the decreased osteoblast activity associated with multiple myeloma (MM) bone disease. We provide evidence that sclerostin is expressed by myeloma cells, that are human myeloma cell lines (HMCLs) and plasma cells (CD138+ cells) obtained from the bone marrow of a large number of MM patients with bone disease. Moreover, we show that there are no differences in sclerostin serum levels between MM patients and controls. Thus, our data indicate that MM cells, as sclerostin source in the bone marrow, could create a microenvironment with high sclerostin concentration, that could contribute in inhibiting osteoblast differentiation.
In the last two decades, numerous scientists have highlighted the interactions between bone and immune cells as well as their overlapping regulatory mechanisms. For example, osteoclasts, the bone-resorbing cells, are derived from the same myeloid precursor cells that give rise to macrophages and myeloid dendritic cells. On the other hand, osteoblasts, the bone-forming cells, regulate hematopoietic stem cell niches from which all blood and immune cells are derived. Furthermore, many of the soluble mediators of immune cells, including cytokines and growth factors, regulate the activities of osteoblasts and osteoclasts. This increased recognition of the complex interactions between the immune system and bone led to the development of the interdisciplinary osteoimmunology field. Research in this field has great potential to provide a better understanding of the pathogenesis of several diseases affecting both the bone and immune systems, thus providing the molecular basis for novel therapeutic strategies. In these review, we reported the latest findings about the reciprocal regulation of bone and immune cells.
It is unclear how physical activity stimulates new bone synthesis. We explored whether irisin, a newly discovered myokine released upon physical activity, displays anabolic actions on the skeleton. Young male mice were injected with vehicle or recombinant irisin (r-irisin) at a low cumulative weekly dose of 100 µg kg(-1). We observed significant increases in cortical bone mass and strength, notably in cortical tissue mineral density, periosteal circumference, polar moment of inertia, and bending strength. This anabolic action was mediated primarily through the stimulation of bone formation, but with parallel notable reductions in osteoclast numbers. The trabecular compartment of the same bones was spared, as were vertebrae from the same mice. Higher irisin doses (3,500 µg kg(-1) per week) cause browning of adipose tissue; this was not seen with low-dose r-irisin. Expectedly, low-dose r-irisin modulated the skeletal genes, Opn and Sost, but not Ucp1 or Pparγ expression in white adipose tissue. In bone marrow stromal cell cultures, r-irisin rapidly phosphorylated Erk, and up-regulated Atf4, Runx2, Osx, Lrp5, β-catenin, Alp, and Col1a1; this is consistent with a direct receptor-mediated action to stimulate osteogenesis. We also noted that, although the irisin precursor Fndc5 was expressed abundantly in skeletal muscle, other sites, such as bone and brain, also expressed Fndc5, albeit at low levels. Furthermore, muscle fibers from r-irisin-injected mice displayed enhanced Fndc5 positivity, and irisin induced Fdnc5 mRNA expression in cultured myoblasts. Our data therefore highlight a previously unknown action of the myokine irisin, which may be the molecular entity responsible for muscle-bone connectivity.
In questo progetto valuteremo la possibile futura applicazione dei polifenoli Resveratrolo (Res) e Polidatina (Pol) presenti nell' uva nera, come coadiuvanti alimentari nel trattamento dell'osteoporosi o nelle patologie degenerative del tessuto osseo. Le proprietà antiossidanti e anti-aging di queste molecole, saranno testate su cellule staminali adulte isolate da polpa dentaria (Dental Pulp Stem Cells), un accreditato modello umano di differenziamento osteblastico, già utilizzato in modelli animali per la rigenerazione di tessuti calcificati. Sarà condotto uno studio comparativo tra Res e Pol, suo precursore naturale più abbondante e metabolicamente più stabile. Entrambi saranno testati su DPSCs in espansione e in condizioni osteogeniche,valutando e comparando il loro effetto sui marcatori staminali e del differenziamento osteoblastico. Le capacità osteogeniche di Res e Pol saranno testate anche su DPSCs coltivate su biomateriali tridimensionali. Verificata la osteogenicità di Res e Pol su tali supporti in vitro, saranno valutate in vivo le capacità osteoinduttive degli scaffolds integrati con le cellule staminali trattate con Res e Pol. Parallelamente sarà valutato l'effetto sistemico di Res e Pol in un modello animale in vivo normale e in uno osteopenico, che simulerà le condizioni patologiche. Res e Pol potrebbero essere ottenuti su larga scala in zone mediterranee produttrici di uva come la Puglia ed essere usati come integratori per la prevenzione di patologie ossee.
L’invenzione di cui trattasi ha per oggetto l’impiego di Polidatina per il trattamento e la prevenzione dell’osteoporosi
Object of the present invention is the use of Irisin for the treatment and/or prevention of osteoporosis. In particular, the present invention refers to the use of recombinant irisin for the treatment and/or prevention of osteoporosis.
Condividi questo sito sui social