Effettua una ricerca
Giovanni Battista Pertosa
Ruolo
Professore Associato
Organizzazione
Università degli Studi di Bari Aldo Moro
Dipartimento
DIPARTIMENTO DELL'EMERGENZA E DEI TRAPIANTI DI ORGANI
Area Scientifica
AREA 06 - Scienze mediche
Settore Scientifico Disciplinare
MED/14 - Nefrologia
Settore ERC 1° livello
Non Disponibile
Settore ERC 2° livello
Non Disponibile
Settore ERC 3° livello
Non Disponibile
BACKGROUND: Arteriovenous fistula (AVF) stenosis is the major cause of vascular access failure in hemodialysis. Adventitial remodeling has been suggested to play a role in the pathogenesis of AVF stenosis. This study aimed to evaluate adventitial fibrosis in stenotic AVF and investigate the underlying molecular mechanisms. METHODS: Forty-four patients undergoing surgery for AVF creation were examined; ten presented AVF failure, with histological-proven AVF stenosis. RESULTS: In stenotic AVF we observed a significant increase of adventitia extracellular matrix deposition and alpha-smooth muscle actin (α-SMA)+ cell numbers; most of these cells were myofibroblast (α-SMA+/vimentin+). Phosphorylated platelet-derived growth factor β receptor (p-PDGFRβ) was significantly increased within the adventitia of stenotic compared to native AVF, along with a marked increase in the phosphorylation of Akt and ERK, two key kinases in PDGFRβ signalling. Myofibroblasts were the main cell type associated with the activation of p-PDGFRβ. At the same time, we observed a significant adventitial vessels rarefaction in stenotic AVF, as demonstrated by a reduced CD34 expression. This event was associated with a marked reduction in the expression of KDR/fetal liver kinase-1, the main vascular endothelial growth factor receptor. The degree of adventitial fibrosis was directly correlated with the extent of adventitial α-SMA and inversely associated with adventitial CD34 expression. Finally, we observed an increase in CD34+/α-SMA+ cells within the adventitia of failed AVF. CONCLUSION: This study suggests that AVF failure is associated with an increased adventitial fibrosis, myofibroblast activation and capillary rarefaction, potentially linked with endothelial-to-mesenchymal transition. In this scenario, our data suggest that PDGF may play a pathogenic role.
Adult renal progenitor cells (ARPCs) isolated from human kidney may contribute to repair featuring acute kidney injury (AKI). Bone morphogenetic proteins (BMPs) regulate differentiation, modeling and regeneration processes in several tissues. Aim of the study was to evaluate the biological actions of BMP-2 in ARPCs in vitro and in vivo. BMP-2 was expressed in ARPCs of normal adult human kidney and it was up-regulated in vivo after delayed graft function (DGF) of renal transplant, condition of AKI. ARPCs expressed BMP-Receptors suggesting their potential responsiveness to BMP-2. Incubation of ARPCs with this growth factor enhanced ROS production, NADPH oxidase activity and Nox4 protein expression. In vivo, Nox4 was localized in BMP-2-expressing CD133+ cells at tubular level after DGF. BMP-2 incubation induced α-SMA, collagen-I and fibronectin protein expression in ARPCs. Moreover, α-SMA co-localized with CD133 in vivo after DGF. The oxidative stimulus (H(2)O(2)) induced α-SMA expression in ARPCs, while the anti-oxidant N-acetyl-cysteine inhibited BMP-2-induced α-SMA expression. Nox4 silencing abolished BMP-2-induced NADPH oxidase activation and myofibroblastic induction. We showed that: a) ARPCs express BMP-2; b) this expression is increased in a model of AKI; c) BMP-2 may induce the commitment of ARPCs towards a myofibroblastic phenotype in vitro and in vivo; d) this pro-fibrotic effect is mediated by Nox4 activation. Our findings suggest a novel mechanism linking AKI with progressive renal damage.
BACKGROUND: Patients with kidney disease have disordered bone and mineral metabolism, including elevated serum concentrations of fibroblast growth factor-23 (FGF23). These elevated concentrations are associated with cardiovascular and all-cause mortality. The objective was to determine the effects of the calcimimetic cinacalcet (versus placebo) on reducing serum FGF23 and whether changes in FGF23 are associated with death and cardiovascular events. METHODS AND RESULTS: This was a secondary analysis of a randomized clinical trial comparing cinacalcet to placebo in addition to conventional therapy (phosphate binders/vitamin D) in patients receiving hemodialysis with secondary hyperparathyroidism (intact parathyroid hormone ≥300 pg/mL). The primary study end point was time to death or a first nonfatal cardiovascular event (myocardial infarction, hospitalization for angina, heart failure, or a peripheral vascular event). This analysis included 2985 patients (77% of randomized) with serum samples at baseline and 2602 patients (67%) with samples at both baseline and week 20. The results demonstrated that a significantly larger proportion of patients randomized to cinacalcet had ≥30% (68% versus 28%) reductions in FGF23. Among patients randomized to cinacalcet, a ≥30% reduction in FGF23 between baseline and week 20 was associated with a nominally significant reduction in the primary composite end point (relative hazard, 0.82; 95% confidence interval, 0.69-0.98), cardiovascular mortality (relative hazard, 0.66; 95% confidence interval, 0.50-0.87), sudden cardiac death (relative hazard, 0.57; 95% confidence interval, 0.37-0.86), and heart failure (relative hazard, 0.69; 95% confidence interval, 0.48-0.99). CONCLUSIONS: Treatment with cinacalcet significantly lowers serum FGF23. Treatment-induced reductions in serum FGF23 are associated with lower rates of cardiovascular death and major cardiovascular events.
AIMS: This study investigated on (i) the role of gp91(phox)/NOX2 in reactive oxygen species (ROS) generation in hemodialysis (HD) patients, and (ii) the link between clotting activation and ROS production in this setting. RESULTS: The study was performed on peripheral blood mononuclear cells (PBMCs) isolated from HD patients randomized to polysulphon/polyamide (S-group, n=30) or ethylene-vinyl-alcohol (EVAL) membrane (E-group, n=30) treatment and from healthy subjects (control group, n=15). ROS generation was increased in PBMCs of HD patients compared with healthy subjects. S-group showed higher levels of intracellular ROS generation than control, whereas E-group did not. In addition, S-group displayed an increase in nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity compared with E-group and healthy subjects. A further increase in NADPH activity shortly after HD treatment was observed only in S-group. The plasma levels of the prothrombin fragment F1+2, a marker of in vivo clotting activation, were significantly higher in S-group than in E-group. Moreover, a heightened thrombin generation was recorded in the plasma of S-group. Intracellular ROS production correlated with NADPH oxidase activity and coagulation priming in HD patients. The in vitro validation study demonstrated that incubation of PBMCs with activated FX induced a significant increase in intracellular ROS production, superoxide generation, and gp91(phox)/NOX2 expression. INNOVATION: The pivotal role of NADPH oxidase in the upregulation of ROS in HD patients makes this enzyme a potential target for therapeutic intervention in the treatment of HD-related oxidative stress. CONCLUSION: The EVAL membrane, by reducing clotting activation, inhibits gp91(phox)/NOX2-related ROS production in HD patients.
Klotho is an anti-aging factor mainly produced by renal tubular epithelial cells (TEC) with pleiotropic functions. Klotho is down-regulated in acute kidney injury in native kidney; however, the modulation of Klotho in kidney transplantation has not been investigated. In a swine model of ischemia/reperfusion injury (IRI), we observed a remarkable reduction of renal Klotho by 24 h from IRI. Complement inhibition by C1-inhibitor preserved Klotho expression in vivo by abrogating nuclear factor kappa B (NF-kB) signaling. In accordance, complement anaphylotoxin C5a led to a significant down-regulation of Klotho in TEC in vitro that was NF-kB mediated. Analysis of Klotho in kidneys from cadaveric donors demonstrated a significant expression of Klotho in pre-implantation biopsies; however, patients affected by delayed graft function (DGF) showed a profound down-regulation of Klotho compared with patients with early graft function. Quantification of serum Klotho after 2 years from transplantation demonstrated significant lower levels in DGF patients. Our data demonstrated that complement might be pivotal in the down-regulation of Klotho in IRI leading to a permanent deficiency after years from transplantation. Considering the anti-senescence and anti-fibrotic effects of Klotho at renal levels, we hypothesize that this acquired deficiency of Klotho might contribute to DGF-associated chronic allograft dysfunction.
NADPH oxidase plays a central role in mediating oxidative stress during heart, liver, and lung ischemia/reperfusion injury, but limited information is available about NADPH oxidase in renal ischemia/reperfusion injury. Our aim was to investigate the activation of NADPH oxidase in a swine model of renal ischemia/reperfusion damage. We induced renal ischemia/reperfusion in 10 pigs, treating 5 of them with human recombinant C1 inhibitor, and we collected kidney biopsies before ischemia and 15, 30, and 60 min after reperfusion. Ischemia/reperfusion induced a significant increase in NADPH oxidase 4 (NOX-4) expression at the tubular level, an upregulation of NOX-2 expression in infiltrating monocytes and myeloid dendritic cells, and 8-oxo-7,8-dihydro-2'-deoxyguanosine synthesis along with a marked upregulation of NADPH-dependent superoxide generation. This burden of oxidative stress was associated with an increase in tubular and interstitial expression of the myofibroblast marker α-smooth muscle actin (α-SMA). Interestingly, NOX-4 and NOX-2 expression and the overall NADPH oxidase activity as well as α-SMA expression and 8-oxo-7,8-dihydro-2'-deoxyguanosine synthesis were strongly reduced in C1-inhibitor-treated animals. In vitro, when we incubated tubular cells with the anaphylotoxin C3a, we observed an enhanced NADPH oxidase activity and α-SMA protein expression, which were both abolished by NOX-4 silencing. In conclusion, our findings suggest that NADPH oxidase is activated during ischemia/reperfusion in a complement-dependent manner and may play a potential role in the pathogenesis of progressive renal damage in this setting. Copyright © 2014 Elsevier Inc. All rights reserved.
BACKGROUND: Disorders of mineral metabolism, including secondary hyperparathyroidism, are thought to contribute to extraskeletal (including vascular) calcification among patients with chronic kidney disease. It has been hypothesized that treatment with the calcimimetic agent cinacalcet might reduce the risk of death or nonfatal cardiovascular events in such patients. METHODS: In this clinical trial, we randomly assigned 3883 patients with moderate-to-severe secondary hyperparathyroidism (median level of intact parathyroid hormone, 693 pg per milliliter [10th to 90th percentile, 363 to 1694]) who were undergoing hemodialysis to receive either cinacalcet or placebo. All patients were eligible to receive conventional therapy, including phosphate binders, vitamin D sterols, or both. The patients were followed for up to 64 months. The primary composite end point was the time until death, myocardial infarction, hospitalization for unstable angina, heart failure, or a peripheral vascular event. The primary analysis was performed on the basis of the intention-to-treat principle. RESULTS: The median duration of study-drug exposure was 21.2 months in the cinacalcet group, versus 17.5 months in the placebo group. The primary composite end point was reached in 938 of 1948 patients (48.2%) in the cinacalcet group and 952 of 1935 patients (49.2%) in the placebo group (relative hazard in the cinacalcet group vs. the placebo group, 0.93; 95% confidence interval, 0.85 to 1.02; P=0.11). Hypocalcemia and gastrointestinal adverse events were significantly more frequent in patients receiving cinacalcet. CONCLUSIONS: In an unadjusted intention-to-treat analysis, cinacalcet did not significantly reduce the risk of death or major cardiovascular events in patients with moderate-to-severe secondary hyperparathyroidism who were undergoing dialysis. (Funded by Amgen; EVOLVE ClinicalTrials.gov number, NCT00345839.).
Sepsis remains a serious cause of morbidity and mortality in critically ill patients, with limited therapeutic options available. Of the several disorders connected with sepsis, acute kidney injury (AKI) is one of the major complications. The pathophysiology of sepsis-induced AKI is characterized by severe inflammation in renal parenchyma with endothelial dysfunction, intra-glomerular thrombosis and tubular injury. Endothelial dysfunction is regulated by several mechanisms implicated in cellular de-differentiation, such as endothelial-to-mesenchymal transition (EndMT). Gram-negative bacteria and their cell wall component lipopolysaccharides (LPSs) are frequently involved in the pathogenesis of AKI. The host recognition of LPS requires a specific receptor, which belongs to the Toll-like receptor (TLR) family of proteins, called TLR4, and two carrier proteins, namely the LPS-binding protein (LBP) and cluster of differentiation 14 (CD14). In particular, LBP is released as a consequence of Gram-negative infection and maximizes the activation of TLR4 signalling. Recent findings regarding the emerging role of LBP in mediating sepsis-induced AKI, and the possible beneficial effects resulting from the removal of this endogenous adaptor protein, will be discussed in this review.
The pathophysiology of endotoxemia-induced acute kidney injury (AKI) is characterized by an intense activation of the host immune system and renal resident cells by lipopolysaccharide (LPS) and derived proinflammatory products. However, the occurrence of renal fibrosis in this setting has been poorly investigated. The aim of the present study was to investigate the possible association between endothelial dysfunction and acute development of tissue fibrosis in a swine model of LPS-induced AKI. Moreover, we studied the possible effects of coupled plasma filtration adsorption (CPFA) in this setting.
Abstract BACKGROUND: The aim of this study was to investigate neutrophil activation and its role in long pentraxin-3 (PTX3) release and oxidative stress generation during haemodialysis (HD) and to correlate neutrophil PTX3 and oxidant expression with endothelial dysfunction. METHODS: Forty-seven uraemic patients on stable HD, 12 healthy subjects and 15 patients with congestive heart failure (New York Heart Association classes III and IV) were enrolled. Neutrophil PTX3 protein expression was evaluated by confocal microscopy. l-selectin expression, intracellular PTX3 localization and reactive oxygen species (ROS) generation in human neutrophils were measured by flow cytometry. NADPH-dependent superoxide generation was investigated by chemiluminescence. PTX3 plasma concentrations were measured by ELISA. Endothelial dysfunction was studied by flow-mediated dilation (FMD). RESULTS: The low baseline levels of FMD significantly improved after HD, but worsened by 24 h. A significant up-regulation of PTX3 protein expression, localized within secondary granules, was detected in neutrophils isolated at 30 and 240 min of HD, along with an increase in l-selectin expression. The up-regulation in intracellular PTX3 in neutrophils was associated with a significant increase in PTX3 plasma concentrations at 240 min. HD increased ROS production and NADPH oxidase activity in neutrophils. In a univariate analysis, pre-treatment with FMD was inversely correlated with PTX3 expression and ROS generation in neutrophils. In a multivariate analysis, both circulating pre-HD PTX3 and intracellular ROS generation by neutrophils were independent predictors of abnormal FMD. CONCLUSIONS: Neutrophil overexpression of PTX3 is associated with ROS overproduction and endothelial dysfunction and may represent an emerging marker of vascular damage progression in HD patients. © The Author 2016. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
Aim. The purpose of this study was to investigate the feasibility of contrast-enhanced ultrasound (CEUS) in the evaluation of renal artery stenosis as compared with traditional techniques: echo color Doppler (ECD) investigation and selective angiography .CEUS is a technique based on the injection of an intravascular biocompatible tracer, namely an intravenous contrast galactose microparticle suspension containing microbubbles (Levovist), that has a similar rheology to that of red blood cells, allowing quantification of renal tissue perfusion. Methods. A population of 120 hypertensive patients (82 men, mean age 55) with a systolic abdominal murmur and/or a diagnosis of poly-districtual atherosclerosis was studied by ECD and CEUS (Levovist). Selective angiography was performed in patients with renal artery stenosis demonstrated by one of the two ultrasonographic techniques. Results. Forty of the 120 patients in the study population showed renal artery stenosis at one of the two ultrasound techniques: ECD identified renal artery stenosis in 33 cases and CEUS in 38. Instead, selective angiography had detected renal artery stenosis in 38 patients, the same with renal artery stenosis diagnosed by CEUS. Thus, CEUS sensitivity, specificity and accuracy were similar to those of angiography while six false negatives and two false positives were obtained with ECD. Conclusion. Our results suggest that this renal CEUS is a promising, new, non-invasive method for screening patients with suspected renal artery stenosis. This technique appears to be superior to traditional ECD flow imaging for diagnosing renal artery stenosis and so may be an important aid in cardiovascular diagnostics.
Condividi questo sito sui social