Effettua una ricerca
Maria Rita Perrone
Ruolo
Professore Ordinario
Organizzazione
Università del Salento
Dipartimento
Dipartimento di Matematica e Fisica "Ennio De Giorgi"
Area Scientifica
Area 02 - Scienze fisiche
Settore Scientifico Disciplinare
FIS/03 - Fisica della Materia
Settore ERC 1° livello
PE - Physical sciences and engineering
Settore ERC 2° livello
PE10 Earth System Science: Physical geography, geology, geophysics
Settore ERC 3° livello
PE10_1 Atmospheric chemistry, atmospheric composition, air pollution
Systematic measurements of dust concentration profiles at a continental scale were recently made possible by the development of synergistic retrieval algorithms using combined lidar and sun photometer data and the establishment of robust remote-sensing networks in the framework of Aerosols, Clouds, and Trace gases Research Infra-Structure Network (ACTRIS)/European Aerosol Research Lidar Network (EARLINET). We present a methodology for using these capabilities as a tool for examining the performance of dust transport models. The methodology includes considerations for the selection of a suitable data set and appropriate metrics for the exploration of the results. The approach is demonstrated for four regional dust transport models (BSC-DREAM8b v2, NMMB/BSC-DUST, DREAM-ABOL, DREAM8-NMME-MACC) using dust observations performed at 10 ACTRIS/EARLINET stations. The observations, which include coincident multi-wavelength lidar and sun photometer measurements, were processed with the Lidar-Radiometer Inversion Code (LIRIC) to retrieve aerosol concentration profiles. The methodology proposed here shows advantages when compared to traditional evaluation techniques that utilize separately the available measurements such as separating the contribution of dust from other aerosol types on the lidar profiles and avoiding model assumptions related to the conversion of concentration fields to aerosol extinction values. When compared to LIRIC retrievals, the simulated dust vertical structures were found to be in good agreement for all models with correlation values between 0.5 and 0.7 in the 1-6 km range, where most dust is typically observed. The absolute dust concentration was typically underestimated with mean bias values of -40 to -20 mu g m(-3) at 2 km, the altitude of maximum mean concentration. The reported differences among the models found in this comparison indicate the benefit of the systematic use of the proposed approach in future dust model evaluation studies.
Three wavelengths (355nm, 532nm and 1064nm) lidar measurements have been performed at the Physics Department of Salento University (40.20 N, 18.06 E) to characterize aerosol optical properties and their dependence on altitude. Results on four case studies representative of different aerosol types at the monitoring site are presented in this work.
Ten combined lidar and sun-radiometer stations in the European Aerosol Research Lidar Network (EARLINET) have been testing technique and software for retrieving aerosol microstructure parameters from coordinated lidar and sun-radiometer data with the aim of creating new type of routing cooperative observations. The paper presents description of a program package and preliminary results of testing measurements at some stations.
Organic (OC) and elemental carbon (EC), inorganic ions (Cl-, NO3-, SO42-, Na+, NH4+, K+, Ca2+), methanesulfonate (MSA(-)) and metals (Al, Fe, Pb, Mn, Ba, V) were monitored in PM1 and PM2.5 samples collected at a suburban site in south-eastern Italy, to contribute to the characterisation of fine particles in the Central Mediterranean.
Columnar and ground-level aerosol optical properties co-located in space and time and retrieved from sun/sky photometer and nephelometer measurements, respectively, have been analyzed to investigate the impact of local and transboundary pollution, to analyze their relationships, and hence to contribute to the aerosol load characterization over the Central Mediterranean. The aerosol optical depth (AOD) at 440 nm, the ngstrom exponent () calculated from the AOD at 440 and 675 nm, and the asymmetry parameter (g (col) ) at 440 nm represent the investigated columnar aerosol parameters. The scattering coefficient (sigma (p)) at 450 nm, the scattering ngstrom exponent (Ayen) calculated from sigma (p) at 450 and 635 nm, and the asymmetry parameter (g) at 450 nm are the corresponding ground-level parameters. It is shown that the columnar and ground-level aerosol properties were significantly and similarly affected by the main airflows identified with backtrajectory cluster analysis. The yearly averaged daily evolution of sigma (p), Ayen, and g was fairly correlated to the one of the AOD, , and g (col) , respectively. These results indicate that the aerosol particles were on average characterized by similar yearly averaged optical properties up to the ground level. In particular, the yearly means of columnar and ground-level ngstrom exponents, 1.3 +/- 0.4 and 1.1 +/- 0.4, respectively, which are close to one, reveal a coarse-mode aerosol contribution in addition to the fine-mode particle contribution up to the ground level. Hourly means, day-by-day, and seasonal daily patterns of ground-level parameters were, however, very weakly correlated with the corresponding columnar parameters. The large impact of the local meteorology on the daily evolution of the ground-level aerosol properties, which makes the impact of long-range transported particles less apparent, was mainly responsible for these last results. It has also been found that columnar ngstrom exponents much smaller than one may not be linked to Ayen values smaller than 1. This may occurs when coarse-mode particle plumes, advected at high altitudes, do not penetrate inside the planetary boundary layer. ngstrom exponents smaller than 1 are due to a significant contribution of coarse-mode particles as dust particles. Therefore, it is shown that Ayen represents one of the best parameters to infer the contribution of coarse-mode particles at the ground level. The daily evolution of the aerosol properties referring to working days (Monday to Friday) and Sunday and the weekly cycle have suggested that the aerosol source contributions varied during the weekends. In particular, the AOD was characterized by a negative weekly cycle (higher AOD values during the weekend than during the weekdays), the Sunday sigma (p) daily mean was 11 % larger than the Monday value, and Ayen reached the highest value on Sunday. The impact up to the ground level of the weekdays' transboundary pollution, which reaches the monitoring site during the weekends, has likely contributed to these results.
Total Suspended Particulate (TSP) and PM2.5 samples simultaneously collected at a coastal site (40.4°N; 18.1°E) in the central Mediterranean are analyzed to investigate the relative role of ions (Cl -, NO3-, SO42-, Na +, NH4+, K +, Mg 2+, Ca 2+) and carbonaceous species in the fine (PM2.5) and coarse (TSP-PM2.5) sampled mass. A methodology is described to determine carbonate carbon (CC), organic carbon (OC), and elemental carbon (EC) levels from Thermal Optical Transmittance (TOT) measurements since carbonate particles may significantly contribute to the Mediterranean particulate. We have found that CC levels vary up to 1.7 μg m -3 and 0.8 μg m -3 in the coarse and fine fraction, respectively. OC and EC levels vary up to 3.0 μg m -3 and 1.5 μg m -3, respectively in the coarse fraction, and vary within the 2.2-10 μg m -3 and 0.5-5 μg m -3 range, respectively in the fine fraction. Hence, OC levels may be overestimated mainly in the coarse fraction, if the CC contribution is not accounted for. CO32- levels (calculated from CC concentrations) account on average for 6% and 10% of the fine and coarse mass, respectively and allow balancing the anion deficit resulting from the ionic balance of ions detected by ion chromatography (IC). Total carbon TC = (OC + EC) accounts on average for 29% and 6% of the fine and coarse mass, respectively. IC ions account for 38% and 17% of the fine and coarse mass, respectively. OC, EC, SO42-, NH4+, and K + are the major components in the fine fraction, accounting on average for 84% of the analyzed PM2.5 mass. Marine- and crust-originated ions (Cl -, Mg 2+, Na +, Ca 2+, CO32-) and NO3- are mainly in the coarse fraction and represent on average 83% of the analyzed coarse mass.
In the framework of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx; http://charmex.lsce.ipsl.fr/) initiative, a field campaign took place in the western Mediterranean Basin between 10 June and 5 July 2013 within the ADRIMED (Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) project. The scientific objectives of ADRIMED are the characterization of the most common ‘Mediterranean aerosols’ and their direct radiative forcing (column closure and regional scale). During 15–24 June a multi-intrusion dust event took place over the western and central Mediterranean Basin. Extra measurements were carried out by some EARLINET/ACTRIS (European Aerosol Research Lidar Network /Aerosols, Clouds, and Trace gases Research InfraStructure Network, http://www.actris.net/) lidar stations in Spain and Italy, in particular on 22 June in support to the flight over southern Italy of the Falcon 20 aircraft involved in the campaign. This article describes the physical and optical properties of dust observed at the different lidar stations in terms of dust plume centre of mass, optical depth, lidar ratio, and particle depolarization ratio. To link the differences found in the origin of dust plumes, the results are discussed on the basis of back-trajectories and air- and space-borne lidars. This work puts forward the collaboration between a European research infrastructure (ACTRIS) and an international project (ChArMEx) on topics of interest for both parties, and more generally for the atmospheric community.
This collection contains all measurements that have been performed in the frame of the EARLINET project during the period April 2000 - December 2010. Some of these measurements are also part of the collections 'Calipso', 'Climatology', 'SaharanDust' or 'VolcanicEruption'. In addition this collection also contains measurements from the categories 'Cirrus', 'DiurnalCycles', 'ForrestFires', 'Photosmog', 'RuralUrban', and 'Stratosphere'. This collection also contains measurements not devoted to any of the above categories. More information about these categories and the contributing stations can be found in the file 'EARLINET_general_introduction.pdf' accompanying this dataset.
This paper introduces the recent European Aerosol Research Lidar Network (EARLINET) quality-assurance efforts at instrument level. Within two dedicated campaigns and five single-site intercomparison activities, 21 EARLINET systems from 18 EARLINET stations were intercompared between 2009 and 2013. A comprehensive strategy for campaign setup and data evaluation has been established. Eleven systems from nine EARLINET stations participated in the EARLINET Lidar Intercomparison 2009 (EARLI09). In this campaign, three reference systems were qualified which served as traveling standards thereafter. EARLINET systems from nine other stations have been compared against these reference systems since 2009. We present and discuss comparisons at signal and at product level from all campaigns for more than 100 individual measurement channels at the wavelengths of 355, 387, 532, and 607 nm. It is shown that in most cases, a very good agreement of the compared systems with the respective reference is obtained. Mean signal deviations in predefined height ranges are typically below ±2 %. Particle backscatter and extinction coefficients agree within ±2 × 10−4 km−1 sr−1 and ± 0.01 km−1, respectively, in most cases. For systems or channels that showed larger discrepancies, an in-depth analysis of deficiencies was performed and technical solutions and upgrades were proposed and realized. The intercomparisons have reinforced confidence in the EARLINET data quality and allowed us to draw conclusions on necessary system improvements for some instruments and to identify major challenges that need to be tackled in the future.
A field campaign took place in the western and central Mediterranean basin on June–July 2013 in the framework of the ChArMEx (Chemistry-Aerosol Mediterranean Experiment, http://charmex.lsce.ipsl.fr/)/ADRIMED (Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region, http://adrimed.sedoo.fr/) project to characterize the aerosol direct radiative forcing (DRF) over the Mediterranean. This work focuses on the aerosol DRF estimations at Lecce (40.33°N; 18.11°E; 30 m above sea level) during the Saharan dust outbreak that affected southern Italy from 20 to 24 June 2013. The Global Atmospheric Model (GAME) and the Two-Stream (TS) model were used to calculate the instantaneous aerosol DRF in the short-wave (SW) and long-wave (LW) spectral ranges, at the surface and at the top of the atmosphere (TOA). The main differences between the two models were due to the different numerical methods to solve the radiative transfer (RT) equations and to the more detailed spectral resolution of GAME compared to that of TS. 167 and 115 subbands were used by GAME in the 0.3–4 and 4–37 µm spectral ranges, respectively. Conversely, the TS model used 8 and 11 subbands in the same spectral ranges, respectively. We found on 22 June that the SW-DRFs from the two models were in good agreement, both at the TOA and at the surface. The instantaneous SW-DRFs at the surface and at the TOA varied from −50 to −34 W m−2 and from −6 to +8 W m−2, respectively, while the surface and TOA LW-DRFs ranged between +3.5 and +8.0 W m−2 and between +1.7 and +6.9 W m−2, respectively. In particular, both models provided positive TOA SW-DRFs at solar zenith angles smaller than 25° because of the mixing of the desert dust with anthropogenic pollution during its transport to the study site. In contrast, the TS model overestimated the GAME LW-DRF up to about 5 and 7.5 times at the surface and at the TOA, respectively, when the dust particle contribution was largest. The low spectral resolution of the real (n) and imaginary (k) refractive index values was mainly responsible for the LW-DRF overestimates of the TS model. However, we found that the “optimization” of the n and k values at 8.75 and 11.5 µm was sufficient in this study to obtain a satisfactory agreement between the LW-DRFs from the two models, both at the TOA and at the surface. The impact of the spectral dependence of the water vapor absorption coefficients on the estimation of the flux without aerosol has also been addressed. Paper results did not reveal any significant impact due to the different numerical methods used by the two models to solve the RT equations.
Downward and upward irradiance measurements, in the short-wave (SW) and long-wave (LW) spectral range, have been used in combination with simultaneous aerosol optical depths (AODs) to experimentally determine the instantaneous and clear-sky aerosol Direct Radiative Forcing (DRF) at the surface, during a desert dust outbreak which affected the Central Mediterranean from 9 to 13 July 2012. AODs were retrieved from AERONET (AErosol RObotic NETwork) sun/sky photometer measurements collocated in space and time. The importance of downward and upward radiative flux measurements to properly account for both the surface albedo dependence on the solar zenith angle, and the land surface temperature (T-Ls) has been highlighted. Measured radiative fluxes were in reasonable agreement with the CERES (Clouds and the Earth's Radiant Energy System) and AERONET corresponding ones collocated in space and time. SW and LW downward fluxes at the surface decreased up to 9% and increased up to 13%, respectively, as a consequence of a factor 5 increase of the AOD at 675 nm (AOD(675)). This is due to the cooling and warming effect of desert dust in the SW and LW spectral range, respectively. In fact, we have also found that the T-Ls increased at a rate of about 250 K per unit increase of the AOD(675). The aerosol DRF at the surface varied from -8 to -74 W m(-2) and from +1.2 to +9.6 W m(-2) in the SW and LW spectral domains, respectively. In particular, we have found that the LW-DRF on average offsets 14% of the related SW component. It is shown that a two-stream radiative transfer model can reproduce the experimental findings at the surface by replacing the refractive indices typical of dust particles with the ones obtained for a mixture made of dust and soot particles. The dust contamination by anthropogenic particles during its transport to the monitoring site located several hundred kilometers away from the source region was responsible for this last result. We have also found by model simulations that the LW-DRF increased linearly with T-Ls both at the surface and at the top of the atmosphere.
The eruption of the Icelandic volcano Eyjafjallajökull in April–May 2010 represents a "natural experiment" to study the impact of volcanic emissions on a continental scale. For the first time, quantitative data about the presence, altitude, and layering of the volcanic cloud, in conjunction with optical information, are available for most parts of Europe derived from the observations by the European Aerosol Research Lidar NETwork (EARLINET). Based on multi-wavelength Raman lidar systems, EARLINET is the only instrument worldwide that is able to provide dense time series of high-quality optical data to be used for aerosol typing and for the retrieval of particle microphysical properties as a function of altitude. In this work we show the four-dimensional (4-D) distribution of the Eyjafjallajökull volcanic cloud in the troposphere over Europe as observed by EARLINET during the entire volcanic event (15 April–26 May 2010). All optical properties directly measured (backscatter, extinction, and particle linear depolarization ratio) are stored in the EARLINET database available at http://www.earlinet.org. A specific relational database providing the volcanic mask over Europe, realized ad hoc for this specific event, has been developed and is available on request at http://www.earlinet.org. During the first days after the eruption, volcanic particles were detected over Central Europe within a wide range of altitudes, from the upper troposphere down to the local planetary boundary layer (PBL). After 19 April 2010, volcanic particles were detected over southern and south-eastern Europe. During the first half of May (5–15 May), material emitted by the Eyjafjallajökull volcano was detected over Spain and Portugal and then over the Mediterranean and the Balkans. The last observations of the event were recorded until 25 May in Central Europe and in the Eastern Mediterranean area. The 4-D distribution of volcanic aerosol layering and optical properties on European scale reported here provides an unprecedented data set for evaluating satellite data and aerosol dispersion models for this kind of volcanic events.
Clear-sky short-wave (SW) and long-wave (LW) irradiance measurements at the surface were combined with AErosol RObotic NETwork (AERONET) sun/sky photometer aerosol products to study the desert dust impact on irradiance measurements at a Central Mediterranean site during the year 2012, by comparing measurements performed on dusty and dust-free days. Daily mean values of both the aerosol Ångström exponent (Å), calculated from the aerosol optical depths (AOD) at 440 and 870 nm retrieved from AERONET sun/sky photometer measurements, and the desert dust loading (DL) from the Barcelona Supercomputing Center Dust REgional Atmospheric Model (BSC-DREAM8b) were used to select dusty days. In particular, we have identified as dusty days the ones characterized by Å values less than 0.9 and DL values larger than 0.5 g m−2. The desert dust events occurred from March to September during the analyzed year, in which we have identified 30 and 96 clear-sky dusty and dust-free days, respectively. The daytime SW and LW downward fluxes (FDN) on average decreased by 8 % and increased by 3 %, respectively, on the dusty days with respect to the dust-free ones. These flux variations were associated with an average increase of 40 % of the AOD at 440 nm and an average decrease of 39 % of the fine mode fraction (η) at 500 nm. The daily means of SW- and LW-FDN were reasonably correlated with the corresponding AOD and η values on the dusty days, revealing that the increase of the coarse mode particle contribution was mainly responsible for the flux changes. Conversely, both the SW- and the LW-FDN values were not correlated with the corresponding AOD and η values on the dust-free days.
Volcanic aerosols resulting from the Eyjafjallajökull eruption were detected in south-eastern Italy from 20 to 22 April 2010, at a distance of approximately 4000 km from the volcano, and have been characterized by lidar, sun/sky photometer, and surface in-situ measurements. Volcanic particles added to the pre-existing aerosol load and measurement data allow quantifying the impact of volcanic particles on the aerosol vertical distribution, lidar ratios, the aerosol size distribution, and the ground-level particulate-matter concentrations. Lidar measurements reveal that backscatter coefficients by volcanic particles were about one order of magnitude smaller over south-eastern Italy than over Central Europe. Mean lidar ratios at 355 nm were equal to 64 ± 5 sr inside the volcanic aerosol layer and were characterized by smaller values (47 ± 2 sr) in the underlying layer on 20 April, 19:30 UTC. Lidar ratios and their dependence with the height reduced in the following days, mainly because of the variability of the volcanic particle contributions. Size distributions from sun/sky photometer measurements reveal the presence of volcanic particles with radii r > 0.5 μm on 21 April and that the contribution of coarse volcanic particles increased from 20 to 22 April. The aerosol fine mode fraction from sun/sky photometer measurements varied between values of 0.85 and 0.94 on 20 April and decreased to values between 0.25 and 0.82 on 22 April. Surface measurements of particle size distributions were in good accordance with column averaged particle size distributions from sun/sky photometer measurements. PM1/PM2.5 mass concentration ratios of 0.69, 0.66, and 0.60 on 20, 21, and 22 April, respectively, support the increase of super-micron particles at ground. Measurements from the Regional Air Quality Agency show that PM10 mass concentrations on 20, 21, and 22 April 2010 were enhanced in the entire Apulia Region. More specifically, PM10 mass concentrations have on average increased over Apulia Region 22%, 50%, and 28% on 20, 21, and 22 April, respectively, compared to values on 19 April. Finally, the comparison of measurement data with numerical simulations by the FLEXPART dispersion model demonstrates the ability of FLEXPART to model the advection of the volcanic ash over the 4000 km from the Eyjafjallajökull volcano to Southern Italy.
Integrating nephelometer measurements have been combined with co-located in space and time PM10 and PM1 mass concentration measurements to highlight the benefits of integrating aerosol optical properties with the chemical speciation of PM1 and PM10 samples. Inorganic ions (SO4 2−, NO3 −, NH4 +, Cl−, Na+, K+, Mg2+, and Ca2+), metals (Fe, Al, Zn, Ti, Cu, V, Mn, and Cr), and the elemental and organic carbon (EC and OC, respectively) have been monitored to characterize the chemical composition of PM1 and PM10 samples, respectively. The scattering coefficient (σp) at 450 nm, the scattering Ångström coefficient (Å) calculated at the 450–635 nm wavelength pair, and the scattering Ångström coefficient difference (ΔÅ) retrieved from nephelometer measurements have been used to characterize the optical properties of the particles at the surface. The frequency distribution of the Å daily means during the one-year monitoring campaign, performed at a southeastern Italian site, has allowed identifying three main Å variability ranges: Å≤0.8, 0.8 < Å≤1.2, and Å > 1.2. We found that σp and ΔÅ mean values and the mean chemical composition of the PM1 and PM10 samples varied with the Å variability range. σp and ΔÅ reached the highest (149Mm−1) and the smallest (0.16) mean value, respectively, on the days characterized by Å > 1.2. EC, SO4 2−, and NH4 + mean mass percentages also reached the highest mean value on the Å > 1.2 days, representing on average 8.4, 9.8, and 4.2%, respectively, of the sampled PM10 mass and 12.4, 10.6, and 7.7%, respectively, of the PM1 mass. Conversely, σp and ΔÅ mean values were equal to 85Mm−1 and 0.55, respectively, on the days characterized by Å≤0.8 and the EC, SO4 2−, and NH4 + mean mass percentages reached smaller values on the Å≤0.8 days, representing 4.5, 6.0, and 1.9% of the PM10 mass and 9.4, 7.3, and 5.8% of the PM1 mass, respectively. Primary and secondary OC (POC and SOC, respectively) contributions also varied with the Å variability range. POC and SOC mean mass percentages reached the highest and the smallest value, respectively, on the days characterized by Å > 1.2. Conversely, POC and SOC mean mass percentages reached the smallest and the highest value, respectively, on the days characterized by Å≤0.8. It has also been shown that the PM, OC, OC+EC, POC, and SOC mass scattering cross sections varied significantly with the Å variability range, because of the Å dependence on aerosol sources and/or emission, transport, and transformation mechanisms. Therefore, it has been shown that Å daily mean values can represent a good tool to better differentiate the chemical speciation of size-fractioned PM samples.
This paper presents a detailed description of LIRIC (LIdar-Radiometer Inversion Code) algorithm for simultaneous processing of coincident lidar and radiometric (sun photometric) observations for the retrieval of the aerosol concentration vertical profiles. As the lidar/radiometric input data we use measurements from European Aerosol Research Lidar Network (EARLINET) lidars and collocated sun-photometers of Aerosol Robotic Network (AERONET). The LIRIC data processing provides sequential inversion of the combined lidar and radiometric data. The algorithm starts with the estimations of column-integrated aerosol parameters from radiometric measurements followed by the retrieval of height dependent concentrations of fine and coarse aerosols from lidar signals using integrated column characteristics of aerosol layer as a priori constraints. The use of polarized lidar observations allows us to discriminate between spherical and non-spherical particles of the coarse aerosol mode. The LIRIC software package was implemented and tested at a number of EARLINET stations. Intercomparison of the LIRIC-based aerosol retrievals was performed for the observations by seven EARLINET lidars in Leipzig, Germany on 25 May 2009. We found close agreement between the aerosol parameters derived from different lidars that supports high robustness of the LIRIC algorithm. The sensitivity of the retrieval results to the possible reduction of the available observation data is also discussed.
Backscatter lidar measurements at 355, 532, and 1064 nm combined with aerosol optical thicknesses (AOTs) from sun photometer measurements collocated in space and time were used to retrieve the vertical profiles of intensive and extensive aerosol parameters. Then, the vertical profiles of the Ångström coefficients for different wavelength pairs (Å(λ1, λ2, z)), the color ratio (CR(z)), the fine mode fraction (η(z)) at 532 nm, and the fine modal radius (R f (z)), which represent aerosol characteristic properties independent from the aerosol load, were used for typing the aerosol over the Central Mediterranean. The ability of the Ångström coefficients to identify the main aerosol types affecting the Central Mediterranean with the support of the backward trajectory analysis was first demonstrated. Three main aerosol types, which were designed as continental-polluted (CP), marine-polluted (MP), and desert-polluted (DP), were identified. We found that both the variability range and the vertical profile structure of the tested aerosol intensive parameters varied with the aerosol type. The variability range and the altitude dependence of the aerosol extinction coefficients at 355, 532, and 1064 nm, respectively, also varied with the identified aerosol types even if they are extensive aerosol parameters. DP, MP, and CP aerosols were characterized by the Å(532, 1064 nm) mean values ± 1 standard deviation equal to 0.5 ± 0.2, 1.1 ± 0.2, 1.6 ± 0.2, respectively. η(%) mean values ± 1SD were equal to 50 ± 10, 73 ± 7, and 86 ± 6 for DP, MP, and CP aerosols, respectively. The R f and CR mean values ± 1SD were equal to 0.16 ± 0.05 μm and 1.3 ± 0.3, respectively, for DP aerosols; to 0.12 ± 0.03 μm and 1.8 ± 0.4, respectively, for MP aerosols; and to 0.11 ± 0.02 μm and 1.7 ± 0.4, respectively, for CP aerosols. CP and DP aerosols were on average responsible for greater AOT and LR values, but the LR and AOT dependence on wavelength was stronger for CP than for DP aerosols. The plots of the lidar ratio values at 355 nm versus the mean columnar values of the 532-1064 nm Ångström coefficient (Å c), the fine mode radius, the fine mode fraction at 532 nm (η c), and the color ratio, respectively, furthermore revealed the greater ability of the Å c and η c values to characterize different aerosol types.
The Lidar/Radiometer Inversion Code (LIRIC) and the Constrained Iterative Inversion (CII) procedure combined with a graphical aerosol classification framework (GF) have been used to analyse their ability in characterizing the altitude dependence of aerosol properties and evaluate their benefits and weaknesses. LIRIC and the CII technique rely on elastic lidar signals at 355, 532, and 1064 nm and collocated Aerosol Robotic Network (AERONET) Sun/sky photometer measurements to retrieve aerosol parameter profiles at the lidar wavelengths. The aerosol GF relies on the combined analysis of the Ångström exponent at the wavelength pairs 355 and 1064 nm (A(355, 1064)) and its spectral curvature (ΔA = A(355, 532) – A(532, 1064)) to estimate the fine-modal radius and the 532 nm fine-mode fraction. The application of the LIRIC and CII-GF techniques to three selected case studies representative of Central Mediterranean aerosol scenarios has revealed that the differences between the aerosol products from LIRIC and the corresponding ones from the CII-GF procedure varied with altitude, increased with the lidar wavelength decrease, and were significantly large when aerosol from different sources and/or from different advection routes was located at the altitudes sounded by the lidar. The plot on the aerosol GF of A(355, 1064) versus the spectral curvature has indicated that the LIRIC constraint that the fine-modal radius is height independent may represent a weakness if aerosol types and hence aerosol size distributions vary with altitude. The use of lidar ratios (LRs) constant with altitude could represent one of the main weaknesses of the CII-GF technique. The combined use of both techniques should allow obtaining a better characterization of the altitude dependence of aerosol properties from three-wavelength elastic lidar signals.
The regional climate model RegCM3 coupled with a radiatively active aerosol model with online feedback is used to investigate direct and semi-direct radiative aerosol effects over Sahara and Europe in a test case of July 2003.
The peculiarity of lidar systems is to provide profiles of optical properties of the atmosphere. The use of specific wavelengths and the selection of different kinds of backscattering (elastic, Raman, polarisation selective) permit to obtain information about suspended particles (aerosols). The authors show here a case study in which particle signals are detected from the boundary layer up to the stratosphere. Information on the size distribution of the different layers can be obtained, using a graphical method relying on the spectral dependence of aerosol extinction. The authors apply this method, for the first time to their knowledge, to stratospheric aerosol.
A multiwavelength integrating nephelometer and a PM10 sampler have been used to continuously measure optical properties and mass concentrations of particles at the ground level with the main aim of determining airflow and local meteorology effects on particle optical properties and PM10 mass concentrations.
The paper investigates numerical procedures that allow determining the dependence on altitude of aerosol properties from multi wavelength elastic lidar signals. In particular, the potential of the LIdar/Radiometer Inversion Code (LIRIC) to retrieve the ver- 5 tical profiles of fine and coarse-mode particles by combining 3-wavelength lidar measurements and collocated AERONET (AErosol RObotic NETwork) sun/sky photometer measurements is investigated.
Abstract Angström exponents (Å) and dust concentrations from the Barcelona Supercomputing Center-Dust REgional Atmospheric Model (BSC-DREAM) were used to infer the impact of long-range transported desert dust particles at the ground level and evaluate their role on the chemical composition of PM1 and PM10 samples. Å values were calculated from the scattering coefficients at 450 and 635 nm, retrieved from integrating nephelometer measurements. Nephelometer measurements were performed at a coastal site (Lecce, 40.33° N, 18.11° E) of south-eastern Italy from December 2011 till November 2012. Days characterized by Å daily mean values smaller than 0.95 and modelled daily dust concentrations larger than 0.1 μg m−3 at 86 m above the ground level were considered representative of days affected by African dust particles up to the ground level (dusty days). Both criteria have allowed identifying 86 dusty days during the investigated period. The analysis of 24-h simultaneously collected PM10 and PM1 samples revealed that the PM1 mass concentrations increased linearly with PM10 both in dusty and dustfree days, which were identified as the ones characterized by Å daily mean values larger than 1.3 and PM1/PM10 ratios larger than 0.35. These results suggested that the PM1 samples were also affected by desert particles on dusty days. In fact, chemical analyses revealed that the Al and Fe mean mass concentrations were larger in dusty day PM1 and PM10 samples. Then, we found that the crustal matter contribution was nearly twice and more than twice larger in dusty PM1 and PM10 samples, respectively, than in corresponding dust-free samples. Mass contributions of organic and elemental carbon, sulfates, and ammonium even if smaller in dusty samples than in dust-free PM1 and PM10 samples revealed the significant role of the anthropogenic pollution also on dusty days.
The effects of the partial solar eclipse of 20 March 2015 on short-wave (SW) and long-wave (LW) irradiance measurements, meteorological variables, and near surface particle properties have been investigated. Measurements were performed at three southern Italy observatories of the Global Atmospheric Watch - World Meteorological Organization (GAW-WMO): Lecce (LE, 40.3°N, 18.1°E, 30 m a.s.l.), Lamezia Terme (LT, 38.9°N, 16.2°E, 50 m a.s.l.), and Capo Granitola (CG, 37.6°N, 12.7°E, 50 m a.s.l.), to investigate the dependence of the eclipse effects on monitoring site location and meteorology. LE, LT, and CG were affected by a similar maximum obscuration of the solar disk, but meteorological parameters and aerosol optical and microphysical properties varied from site to site on the eclipse's day. The maximum obscuration of the solar disk, which was equal to 43.6, 42.8, and 45.1% at LE, LT, and CG, respectively, was responsible for the decrease of the downward SW irradiance up to 45, 44, and 45% at LE, LT, and CG, respectively. The upward SW irradiance decreased up to 45, 48, and 44% at LE, LT, and CG, respectively. Consequently, the eclipse SW direct radiative forcing (DRF) was equal to −307, −278, and −238 W m−2 at LE, LT, and CG, respectively, at the maximum obscuration of the solar disk. The downward and upward LW irradiance decrease was quite small (up to 4%) at the three sites. The time evolution of the meteorological parameters and aerosol optical and microphysical properties and their response strength to the solar eclipse impact varied from site to site, mainly because of the local meteorology and geographical location. Nevertheless, the solar eclipse was responsible at the study sites for a temperature decrease within 0.5–0.8 K, a relative humidity increase within 3.5–4.5%, and a wind speed decrease within 0.5–1.0 m s−1, because of its cooling effect. The solar eclipse was also responsible at all the sites for the increase of near surface particle scattering coefficient (σsp) and scattering color ratio (CRσ), mainly for the increase of both ultrafine and fine mode particle concentrations. In more detail, σsp, CRσ, and number concentration increased up to 2 Mm−1, 0.2, and 9 · 103 cm−3, respectively. The atmospheric turbulence weakening, driven by the eclipse cooling effect and revealed by the decrease of turbulent kinetic energy and potential temperature flux, mainly contributed to the changes of near surface particle concentrations and size distributions.
This paper analyses elemental (EC), organic (OC) and total carbon (TC) concentration in PM2.5 and PM10 samples collected over the last few years within several national and European projects at 37 remote, rural, urban, and traffic sites across the Italian peninsula.
During the ADRIMED (Aerosol Direct Radiative Impact on the regional climate in the Mediterranean region) special observation period (SOP-1a), conducted in June 2013 in the framework of the ChArMEx (Chemistry-Aerosol Mediterranean Experiment) project, a moderate Saharan dust event swept the Western and Central Mediterranean Basin (WCMB) from west to east during a 9-day period between 16 and 24 June. This event was monitored from the ground by six EARLINET/ACTRIS (European Aerosol Research Lidar Network/Aerosols, Clouds, and Trace gases Research Infrastructure Network) lidar stations (Granada, Barcelona, Naples, Potenza, Lecce and Serra la Nave) and two ADRIMED/ChArMEx lidar stations specially deployed for the field campaign in Cap d'en Font and Ersa, in Minorca and Corsica Islands, respectively. The first part of the study shows the spatio-temporal monitoring of the dust event during its transport over the WCMB with ground-based lidar and co-located AERONET (Aerosol Robotic Network) Sun-photometer measurements. Dust layer optical depths, ngstrom exponents, coarse mode fractions, linear particle depolarization ratios (LPDRs), dust layer heights and the dust radiative forcing estimated in the shortwave (SW) and longwave (LW) spectral ranges at the bottom of the atmosphere (BOA) and at the top of the atmosphere (TOA) with the Global Atmospheric Model (GAME), have been used to characterize the dust event. Peak values of the AERONET aerosol optical depth (AOD) at 440 nm ranged between 0.16 in Potenza and 0.37 in Cap d'en Font. The associated ngstrom exponent and coarse mode fraction mean values ranged from 0.43 to 1.26 and from 0.25 to 0.51, respectively. The mineral dust produced a negative SW direct radiative forcing at the BOA ranging from -56.9 to -3.5 W m(-2). The LW radiative forcing at the BOA was positive, ranging between +0.3 and +17.7 W m(-2). The BOA radiative forcing estimates agree with the ones reported in the literature. At the TOA, the SW forcing varied between -34.5 and +7.5 W m(-2). In seven cases, the forcing at the TOA resulted positive because of the aerosol strong absorbing properties (0.83 < single-scattering albedo (SSA) < 0.96). The multi-intrusion aspect of the event is examined by means of air- and space-borne lidar measurements, satellite images and back trajectories. The analysis reported in this paper underline the arrival of a second different intrusion of mineral dust observed over southern Italy at the end of the considered period which probably results in the observed heterogeneity in the dust properties. Keywords
A lidar system is used to determine the diurnal evolution of the planetary boundary-layer (PBL) height on a summer day characterised by anticyclonic conditions. The site is located on a peninsular site some 15 km distant from the sea in south-east Italy. Contrary to expectations, the PBL height, after an initial growth consequent to sunrise, ceases to increase about two hours before noon and then decreases and stabilises in the afternoon. The interpretation for such an anomalous behaviour is provided in terms of trajectories of air parcels towards the lidar site, which are influenced by the sea breeze, leading to a transition from a continental boundary layer to a coastal internal boundary layer. The results are analysed using mesoscale numerical model simulations and a simple model that allows for a more direct interpretation of experimental results.
Water soluble ions, methanesulfonate, organic and elemental carbon, and metals in PM2.5 and PM1 samples were analysed by Positive Matrix Factorization to identify and quantify major sources of fine particles at a Central Mediterranean site. The cluster analysis of four-day back trajectories was used to determine the dependence of PM2.5 and PM1 levels and composition on air-flows. The cluster analysis has identified six, six, and seven distinct air-flow types arriving at 500, 1500, and 3000 m above sea level (asl), respectively. Slow-west (Wslow) and north-eastern (NE) flows at 500 and 1500 m asl were the most frequent and were associated with the highest PM2.5 and PM1 concentrations. The PM concentrations from combustion sources including biomass burning were at their maximum under north-western (NW) flows. Similarly, the ammonium sulphate source was enhanced under Wslow and NE flows. Southeastern Mediterranean Sea air-flows were associated with the highest PM2.5 concentrations due to the heavy-oil-combustion source and the highest PM2.5 and PM1 concentrations due to the secondary marine source. PM2.5 concentrations due to the reacted dust and traffic source and PM1 concentrations due to the nitrate with reacted dust and mixed anthropogenic source showed no clear dependence on air-flows. This work highlights the different impact of aerosol sources on PM2.5 and PM1 fractions, being PM1 more adequate to control anthropogenic emissions from combustion sources.
The peculiarity of lidar systems is to provide vertical profiles of aerosol extinction and backscattering coefficients, which allow getting information on aerosol optical properties and their dependence on altitude. We analyze in this paper a case study in which lidar signals have allowed detecting different atmospheric aerosol layers from the boundary layer up to the stratosphere. Results on the dependence of aerosol optical properties on altitude will also be presented.
Three wavelengths (355 nm, 532 nm and 1064 nm) lidar measurements have been used to characterize the dependence on altitude of the aerosol size distribution by the combined analysis of the extinction Ångstrom coefficient a(355 nm, 1064 nm) and the Angstrom exponent difference da = a(355 nm, 532 nm) - a(532 nm, 1064 nm). Lidar measurements were performed at the Physics Department of Universita’ del Salento (Lecce), in south eastern Italy.
An approach based on the graphical method of Gobbi and co-authors (2007) is introduced to estimate the dependence on altitude of the aerosol fine mode radius and of the fine mode contribution to the aerosol optical thickness from three-wavelength lidar measurements.
Condividi questo sito sui social