Effettua una ricerca
Marco Mazzeo
Ruolo
Ricercatore
Organizzazione
Università del Salento
Dipartimento
Dipartimento di Matematica e Fisica "Ennio De Giorgi"
Area Scientifica
Area 02 - Scienze fisiche
Settore Scientifico Disciplinare
FIS/01 - Fisica Sperimentale
Settore ERC 1° livello
PE - Physical sciences and engineering
Settore ERC 2° livello
PE3 Condensed Matter Physics: Structure, electronic properties, fluids, nanosciences, biophysics
Settore ERC 3° livello
PE3_12 Molecular electronics
An organic based microcavity showing fully reversible colour tunability has been achieved for the first time. The emission output changes according to the modulation from pure photonic to polaritonic resonant modes through UV irradiation of the light-switchable matrix.
The manuscript describes the design, preparation and characterization of two structurally isomeric random poly(arylene-vinylene)s, the properties of which have been optimized for their use as donor materials in BHJ solar cells. The structure of the polymers was aimed at broadening as much as possible their absorption profile. Poly[9,9-dioctylfluorene-vinylene-co-4,7-dithiophen-2-yl-benzo[1,2,5]thiadiazole-vinylene] (P1) and poly[2,7-dithiophen-2-yl-9,9-dioctylfluorene-vinylene-co-4,7-benzo[1,2,5]thiadiazole-vinylene] (P2) were prepared using the Suzuki-Heck polymerization. The polymers were characterized by elemental analysis, NMR, UV-vis absorption and photoluminescence, cyclic voltammetry, and GPC. The electrochemical characterization of P1 and P2 revealed similar HOMO/LUMO energy levels, although the UV-vis absorption profile of P2 is markedly broader than the one exhibited by P1. The more panchromatic absorption of P2 was explained by DFT and TDDFT calculations showing that the model systems, contributing together to the description of the random polymeric structure, exhibited different calculated excitation energies, that cover a broader portion of the absorption spectrum. In BHJ solar cells, the broadness of the absorption strongly influences the BHJ solar cell performances of P2 compared to P1 leading to higher short circuit currents and to a 3-fold higher power conversion efficiency. The PCE value (0.6%) obtained with P2 is in line with those obtained for other poly(heteroarylene-vinylene)s donors and is amenable to improvement by optimizing the device construction (PC61BM amount in the blend or use of annealing processes). These results demonstrate how combination of a suitable choice of the sequence of aryl units together with the potentialities offered by random polymers, can be useful tools in the design of new light-harvesting polymers in BHJ.
Exciton-polaritons are bosonic quasiparticles that arise from the normal mode splitting of photons in a microcavity and excitons in a semiconductor material. One of the most intriguing extensions of such a lightmatter interaction is the so-called ultrastrong coupling regime. It is achieved when the Rabi frequency (Omega(R), the energy exchange rate between the emitter and the resonant photonic mode) reaches a considerable fraction of the emitter transition frequency, omega(0). Here, we report a Rabi energy splitting (2h Omega(R)) of 1.12 eV and record values of the coupling ratio (2 Omega(R)/omega(0)) up to 0.6-fold the material band gap in organic semiconductor microcavities and up to 0.5-fold in monolithic heterostructure organic light-emitting diodes working at room temperature. Furthermore, we show that with such a large coupling strength it is possible to undress the exciton homogeneous linewidth from its inhomogeneous broadening, which allows for an unprecedented narrow emission line (below the cavity finesse) for such organic LEDs. The latter can be exploited for the realization of novel monochromatic sources and near-IR organic emitting devices
This study reports oil the first monodispersed molecular materials embodying the dibenzothiophene-5,5-dioxide core for the achievement of blue electroluminescence. The core has been functionalised in its 2.8- or 3,7-positions with dimethyl-fluorene (2,8-DBTOF and 3,7-DBTOF) or methyl-carbazole (2,8-DBTOC and 3,7-DBTOC) groups. The obtained compounds were characterised by H-1 and C-13 NMR, APCI-MS, thermal analysis (TGA and DSQ and cyclic voltammetry. Their optical and photophysical properties were investigated by UV and PL measurements as well as by time-dependent density-functional theory calculations. The materials were successfully employed as active layers ill blue to purplish blue p-i-n OLED devices. that reached, in the case of 3,7-DBTOC, performances as high as 11 422 cd m(-2) and 3.25 cd A(-1).
We report on a multilayer structure hybrid light-emitting device (HLED) using a water/alcohol-soluble polymer poly(9,9-bis{30-[(N,N-dimethyl)-N-ethylammonium}-propyl]-2,7-fluorene dibromide) as an electron-transporting layer and a close-packed quantum dot-layer (QD-layer) as an emitting layer. The device was realized by full spin-coating technology without thermal evaporation process for the deposition of organic layers. The QD-layer was a mixture of QDs with two different sizes, in which large size QD-emitters were dispersed in small size QDs to weaken the concentration quenching. The device achieved a maximum power efficiency of 0.58 lm/W, which nearly quadrupled that of the HLED with a plain large size QD-EML. (C) 2010 American Institute of Physics.[doi: 10.1063/1.3484145]
The technology of white organic light-emitting diodes (WOLEDs) is attracting growing interest due to their potential application in indoor lighting. Nevertheless the simultaneous achievement of high luminous efficacy (LE), high color rendering index (CRI), very low manufacturing costs and compatibility with flexible thin substrates is still a great challenge. Indeed, very high efficiency devices show usually low values of CRI, not suitable for lighting applications, and use expensive indium tin oxide (ITO) electrodes which are not compatible with low cost and/or flexible products. Here we show a novel low cost ITO-free WOLED structure based on a multi-cavity architecture with increased photonic mode density and still broad white emission spectrum, which allows for simultaneous optimization of all device characteristics. Without using out-coupling optics or high refractive index substrates, CRI of 85 and LE as high as 33 lm W-1 and 14 lm W-1 have been demonstrated on ITO-free glass and flexible substrates, respectively. (C) 2013 Elsevier Ltd. All rights reserved.
In this Letter, we demonstrate a way to control the charge carrier transport mechanisms in phosphorescent organic light-emitting devices based on the mixing of two p and n host materials in the emissive layer (EML). The matrices have been selected in order to fulfill the requirements of the energy level mismatch with the transporting and emitting materials. By using the mixed-host approach in combination with a phosphorescent red emitter, namely (1-phenylisoquinoline) iridium (III) [Ir(piq)(3)], maximum external and power efficiencies of 14.3% and 10 lm/W, respectively, have been achieved, with an average external efficiency value of 12% in the luminance range 100-10,000 cd/m(2). (C) 2010 Optical Society of America
The integration of a plasmonic lamellar grating in a heterostructure organic solar cell as a light trapping mechanism is investigated with numerical Finite Elements simulations. A global optimization of all the geometric parameters has been performed. The obtained wide-band enhancement in optical absorption is correlated with both the propagating and the localized plasmonic modes of the structure, which have been identified and characterized in detail.
We describe the synthesis of two novel poly(1,4-arylene-2,5-thienylene)s P1 and P2 containing benzo[c][2,1,3]thiadiazole monomeric units via Suzuki-Miyaura polymerization of a thiophene diboronic ester with aryl diiodides. The use of a catalyst complex consisting of Pd(OAc)(2) in combination with the electron-rich biaryl phosphine S-Phos resulted in efficient polymerization reactions. The polymers synthesized, P1 and P2, were characterized by UV-vis spectroscopy and cyclic voltammetry. Theoretical calculations and electrochemical measurements on P1 suggested a favorable position of the molecular orbitals for employment in polymer solar cells in combination with PCBM. Devices containing P1:PCBM 1:2 in the active layer showed an efficiency of 1.2% by simple spin casting from chloroform. (C) 2011 Elsevier B.V. All rights reserved.
The relations between the chemical-physical properties of novel designed monodispersed donors and their photovoltaic performances are discussed. The importance of intermolecular interactions is emphasized to figure out the achievement of high performing bulk hetero-junction solar cells which are solution processed.
A simple synthesis was applied and tested for the preparation of boron-doped titanium dioxide [TiO2(B)] nanocrystals using titanium tetraisopropoxide (TTIP) together with boric acid (H3BO3) and benzyl alcohol as reaction solvent. Changes in the TTIP/H3BO3 molar ratio allowed a scalable synthetic protocol with a significant B-dopant control. In particular, this approach does not need surfactants or a final calcination step. X-ray diffractometry (XRD), low- and high-resolution transmission electron microscopy (TEM and HRTEM), and micro Raman spectroscopy revealed that the TiO2 nanocrystals produced have diameters up to about 10 nm and are mainly of the anatase phase but that a brookite phase was progressively formed with increased dopant level. The amount of boron was measured by inductively coupled plasma atomic emission spectroscopy (ICP-AES), and the presence of boron inside the crystals was determined by 11B cross-polarized magic-angle spinning nuclear magnetic resonance (11B CP-MAS NMR) spectroscopy. X-ray photoelectron spectroscopy (XPS) revealed the presence of boron on the nanocrystal surfaces, confirming the trend in the dopant concentration already observed with ICP-AES elemental analysis. Microphotoluminescence studies indicated the formation of three different typical luminescent defect states in correlation with the amount of added boron in the titania. UV/Vis absorption spectra showed a boron-dependent redshift of the absorption edge.
Exciton-polaritons in semiconductors are quasi-particles which have recently shown the capability to undergo phase transition into a coherent hybrid state of light and matter. The observation of such quasi-particles in organic microcavities has attracted increasing attention for their characteristic of reaching condensation at room temperature. In this work, the emission properties of organic polaritons are demonstrated not to depend on the overlap between the absorption and emission states of the molecule and that the emission dynamics are modified in the strong coupling regime, showing a significant enhancement of the photoluminescence intensity as compared to the bare dye. This paves the way to the investigation of molecules with large absorption coefficients but poor emission efficiencies for the realization of polariton condensates and organic electrically injected lasers by exploiting strong exciton-photon coupling regimes.
We report optical writing at the nanometer scale of spin coated PMMA-spiropyran films. By using a near-field optical microscope, pure optical nano-writing with a resolution of 160 nm and writing speed of 0.4 mu m/s was achieved. Simultaneous topographic and optical writing was also obtained by simply coupling to the near-field few more mW of laser power. Due to the fast optical response of the spiropyran molecule, nanolithography on PMMA-spyropyran thin films appears to be very attractive for future photonics applications. (C)2014 Optical Society of America
The realization of white-light sources with a combination of high color rendering index ( CRI), which is the average of the first eight rendering indices, and the deep-red color rendering R9 is an important challenge in the field of solid-state lighting. Herein, we report on a pure white hybrid light-emitting device combining a deep-blue emission from a polymer with blue, green, and red emissions from ternary CdSe/ZnS quantum dots. By carefully designing the device structure and tuning the ratio of QDs with different sizes, high CRI of 94 and R9 of 92 at 525 cd/m(2) were achieved. (C) 2010 Optical Society of America
A new approach to generate and manage white light from an organic light emitting diode is shown. It consists in the coupling of two microcavity resonators made of only metallic and organic layers, whose operation principle is analogous to that of two mechanical harmonic oscillators coupled by a spring . This approach allows the solution of key open points in the field of plastic white light sources
The development of alternative deposition techniques is an important step towards the realization of low cost multilayered organic solar cells. While spin-coating needs orthogonal solvents to avoid an intermixing of stacked layers, thermal evaporation is expensive and not applicable to polymers. We show here how an innovative deposition technique called dry spray-coating may represent a promising way to manufacture bulk-hetero-junction (BHJ) and multilayered solar cells. Using standard materials such as poly(3-hexylthiophene-2,5-diyl) and [6,6]-phenyl-C61-butyric acid methyl ester, we achieved efficiency of 2.6% for the BHJ device, while a value of 1.5% was obtained for a bilayer structure using the same solvent for both materials. (C) 2013 AIP Publishing LLC.
The coupling of the electromagnetic field with an electronic transition gives rise, for strong enough light-matter interactions, to hybrid states called exciton-polaritons. When the energy exchanged between light and matter becomes a significant fraction of the material transition energy an extreme optical regime called ultrastrong coupling (USC) is achieved. We report a microcavity embedded p-i-n monolithic organic light emitting diode working in USC, employing a thin film of squaraine dye as active layer. A normalized coupling ratio of 30% has been achieved at room temperature. These USC devices exhibit a dispersion-less angle-resolved electroluminescence that can be exploited for the realization of innovative optoelectronic devices. Our results may open the way towards electrically pumped polariton lasers. (C) 2014 AIP Publishing LLC.
The matrix assisted pulsed laser evaporation (MAPLE) technique is emerging as an alternative route to conventional deposition methods of organic materials (solution-phase and thermal evaporation approaches). However, the high surface roughness of the films deposited by MAPLE makes this technique not compatible with applications in electronics and photonics. In this paper we report the deposition of MAPLE-films of a green light emitting polymer, commercially named ADS125GE, with remarkable low roughness values, down to about 10 nm at the thickness conventionally used in photonic devices (similar to 40 nm). This issue is discussed as a function of polymer concentration, target-substrate distance and substrate rotation based on AFM topography images, roughness estimation and optical (absorption and luminescent) measurements. In addition we have fabricated an organic light emitting diode with this technique using the best deposition parameters which guarantee the lowest roughness. These results open the way to MAPLE applications in organic photonics and opto-electronics.
The development of alternative deposition techniques of conjugated polymeric compounds is an important step towards the fabrication of low cost multi-layered organic light emitting diodes suitable for display or lighting applications. In this work we show a white light -emitting polymeric hetero-structured diode consisting of three-stacked blue, red and green light emitting polymers. In order to circumvent the issue of selecting orthogonal solvents in solution -deposition approaches, we combine spin-coating with the Matrix Assisted Pulsed Laser Evaporation technique, resulting in the realization of a polymeric multilayered stack. By controlling the carriers and the energy transfer across the three light emitting layers interfaces, as well as the interplay between the deposition parameters, a pure white colour emission with Commission Internationale de l'Éclairage coordinates (X=0.327, Y=0.374) and a Color Rendering Index of 70 have been achieved. Our study represents the first proof of a light emitting diode made by multilayer polymeric thin films emitting white light.
This manuscript reports on the synthesis, the photophysical study and the electroluminescent properties of a series of heteroleptic cyclometalated iridium(III) complexes based on 2,5-diaryl-pyridines as C^N cyclometalating ligands and acetylacetonate as ancillary ligand. The complexes were characterised by elemental analysis, ESI-MS, multinuclear NMR, TGA and electrochemistry. Their optical properties were investigated by UV-Vis and photoluminescence. DFT and TD-DFT calculations provided further insights into the effects of the 5-aryl substitution on the electronic and photophysical properties of the new complexes. The presence of suitable π-extended ligands exerts a beneficial effect on the performances of the corresponding solution-processed light-emitting diodes, leading to a maximum brightness of 10 620 cd m−2 at a current efficiency of 10.0 cd A−1.
New random poly(arylene-vinylene)s obtained by combining different amounts of benzo[2,1,3]thiadiazole units with 9,9-dialkylfluorene and/or 1,4-dialkoxybenzene building blocks were synthesized by the Suzuki-Heck polymerization and characterized for use in bulk hetero-junction solar cells. Their optical, electrochemical, morphological and photovoltaic features were investigated. Notwithstanding the relatively low weight-average molecular weights of the obtained polymers (7000–13000 Da), they formed good quality films by spin-coating. UV–Vis measurements permitted the evaluation of their band gap (1.77–2.12 eV), enabling them to harvest a broad portion of the solar spectrum from 350 nm to 650–700 nm. An electrochemical study revealed that the copolymers are endowed with HOMO/LUMO energy levels suitable for both an efficient electron transfer and a high open circuit voltage (Voc) for devices embodying the polymer/PCBM blends. This investigation pinpoints the important role of the copolymer composition (in terms of molar ratio of the monomeric units) on the performance of the donors in BHJs. In fact, in disagreement with the presumed Voc and current densities, the terpolymer poly[1,4-bis(2-ethylhexyloxy)-2,5-phenylene-vinylene-co-9,9-bis(2-ethylhexyl)-2,7-fluorenylene-vinylene-co-4,7-benzo[2,1,3]thiadiazolylene-vinylene] showed the best performance of the copolymer series, with a PCE of 0.4% and a Voc of 0.76 V, probably due to the favorable phase separation in the blend and consequently a better exciton dissociation.
The article reports on the properties of a new class of arylene–ethynylene semiconductors incorporating anthracene and the bridged bithiophene dithienopyrrole. Two monodispersed structures were synthesised: the first with a dithienopyrrole core bound to two anthracenyl–ethynyl side groups namely the 2,6-bis(anthracen-9-ylethynyl)-4-(2-ethylhexyl)-4H-dithieno[3,2-b:2′,3′-d]pyrrole (ADA); in the second structure the anthracene core was functionalised with two dithienopyrrolylethynyl groups, obtaining 9,10-bis((4-(2-ethylhexyl)-4H-dithieno[3,2-b:2′,3′-d]pyrrol-2-yl)ethynyl)anthracene (DAD). The properties of these materials were compared with those of the corresponding polymer: poly[4-(2-ethylhexyl)-4H-dithieno[3,2-b:2′,3′-d]pyrrole-2,6-diylethynylene-anthracen-9,10-diylethynylene] (polyAD). Devices employing PC61BM as an electron acceptor revealed that the monodispersed materials (ADA and DAD) were better performing than polyAD, seemingly due to the better homogeneity of the donor–acceptor blend, as revealed by AFM. The PCE value (1.3%) obtained with DAD ranks among the highest reported for non-polymeric small molecule-based BHJ solar cells constructed without the use of additives or annealing processes, thus demonstrating that ethynylene-containing electron-rich systems are promising donors for organic solar cell applications.
An organic light emitting diode (OLED) emitting light downward through a transparent substrate (240) is described. The OLED embeds a microcavity (220) formed between a cathode (210) and an anode (230) and includes a plurality of organic layers comprising a light emitting layer (225). It is characterized in that the plurality of organic layers includes at least a first layer (229) made of an organic doped material aimed at enhancing the transport of holes; the plurality of organic layers also includes at least a second layer (221) made of an organic doped material aimed at enhancing the transport of electrons. The OLED is further characterized in that the anode i (230) is obtained by deposition of a semi transparent layer of silver (Ag) over the transparent substrate to be directly in contact with the first doped organic layer (229). Then, thicknesses of the first and second doped organic layers can be freely adapted to best adjust the optical characteristics of the microcavity for the wavelength of monochromatic light to be produced by the OLED.
Condividi questo sito sui social