Effettua una ricerca
Annalisa Mastroserio
Ruolo
Ricercatore a tempo determinato - tipo B
Organizzazione
Università degli Studi di Foggia
Dipartimento
Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente
Area Scientifica
Area 02 - Scienze fisiche
Settore Scientifico Disciplinare
FIS/01 - Fisica Sperimentale
Settore ERC 1° livello
Non Disponibile
Settore ERC 2° livello
Non Disponibile
Settore ERC 3° livello
Non Disponibile
The elliptic, v(2), triangular, v(3), and quadrangular, v(4), azimuthal anisotropic flow coefficients are measured for unidentified charged particles, pions, and (anti-)protons in Pb-Pb collisions at root S-NN = 2.76 TeV with the ALICE detector at the Large Hadron Collider. Results obtained with the event plane and four-particle cumulant methods are reported for the pseudo-rapidity range vertical bar eta vertical bar < 0.8 at different collision centralities and as a function of transverse momentum, p(T), out to p(T) = 20 GeV/c. The observed non-zero elliptic and triangular flow depends only weakly on transverse momentum for p(T) > 8 GeV/c. The small p(T) dependence of the difference between elliptic flow results obtained from the event plane and four-particle cumulant methods suggests a common origin of flow fluctuations up to p(T) = 8 GeV/c. The magnitude of the (anti-)proton elliptic and triangular flow is larger than that of pions out to at least p(T) = 8 GeV/c indicating that the particle type dependence persists out to high p(T). (c) 2013 CERN. Published by Elsevier B.V. All rights reserved.
We report the first results of elliptic (v2), triangular (v3), and quadrangular (v4) flow of charged particles in Pb-Pb collisions at a center-of-mass energy per nucleon pair of root s(NN) = 5.02 TeV with the ALICE detector at the CERN Large Hadron Collider. The measurements are performed in the central pseudorapidity region vertical bar n vertical bar < 0.8 and for the transverse momentum range 0.2 < p(T) < 5 GeV/c. The anisotropic flow is measured using two-particle correlations with a pseudorapidity gap greater than one unit and with the multiparticle cumulant method. Compared to results from Pb-Pb collisions at root s(NN) = 2.76 TeV, the anisotropic flow coefficients v2, v3, and v4 are found to increase by (3.0 +/- 0.6)%, (4.3 +/- 1.4)%, and (10.2 +/- 3.8)%, respectively, in the centrality range 0%-50%. This increase can be attributed mostly to an increase of the average transverse momentum between the two energies. The measurements are found to be compatible with hydrodynamic model calculations. This comparison provides a unique opportunity to test the validity of the hydrodynamic picture and the power to further discriminate between various possibilities for the temperature dependence of shear viscosity to entropy density ratio of the produced matter in heavy-ion collisions at the highest energies.
The measurement of two-particle angular correlations is a powerful tool to study jet quenching in a p(T) region inaccessible by direct jet identification. In these measurements pseudorapidity (Delta(eta)) and azimuthal (Delta phi) differences are used to extract the shape of the near-side peak formed by particles associated with a higher p(T) trigger particle (1 < p(T,trig) < 8 GeV/c). A combined fit of the near-side peak and long-range correlations is applied to the data allowing the extraction of the centrality evolution of the peak shape in Pb-Pb collisions at root s(NN) = 2.76 TeV. A significant broadening of the peak in the Delta(eta) direction at low p(T) is found from peripheral to central collisions, which vanishes above 4 GeV/c, while in the Delta(phi) direction the peak is almost independent of centrality. For the 10% most central collisions and 1 < p(T,assoc) < 2 GeV/c, 1 < p(T,trig) < 3 GeV/c a novel feature is observed: a depletion develops around the center of the peak. The results are compared to pp collisions at the same center of mass energy and AMPT model simulations. The comparison to the investigated models suggests that the broadening and the development of the depletion is connected to the strength of radial and longitudinal flow.
We present the first azimuthally differential measurements of the pion source size relative to the second harmonic event plane in Pb-Pb collisions at a center-of-mass energy per nucleon-nucleon pair of root(NN)-N-s = 2.76 TeV. The measurements have been performed in the centrality range 0%-50% and for pion pair transverse momenta 0.2 < k(T) < 0.7 GeV/c. We find that the R-side and R-out radii, which characterize the pion source size in the directions perpendicular and parallel to the pion transverse momentum, oscillate out of phase, similar to what was observed at the Relativistic Heavy Ion Collider. The final-state source eccentricity, estimated via R-side oscillations, is found to be significantly smaller than the initial-state source eccentricity, but remains positive-indicating that even after a stronger expansion in the in-plane direction, the pion source at the freeze-out is still elongated in the out-of-plane direction. The 3 + 1D hydrodynamic calculations are in qualitative agreement with observed centrality and transverse momentum R-side oscillations, but systematically underestimate the oscillation magnitude.
The production of the prompt charmed mesonsD(0), D+, andD(*+) relative to the reaction plane was measured in Pb-Pb collisions at a center-of-mass energy per nucleon-nucleon collision of root s(NN) = 2.76 TeV with the ALICE detector at the CERN Large Hadron Collider. D mesons were reconstructed via their hadronic decays at central rapidity in the transverse-momentum (pT) interval 2-16 GeV/c. The azimuthal anisotropy is quantified in terms of the second coefficient v(2) in a Fourier expansion of the D-meson azimuthal distribution and in terms of the nuclear modification factor R-AA, measured in the direction of the reaction plane and orthogonal to it. The v(2) coefficient was measured with three different methods and in three centrality classes in the interval 0%-50%. A positive v(2) is observed in midcentral collisions (30%-50% centrality class), with a mean value of 0.204(-0.036)(+0.099) (tot.unc.) in the interval 2 < pT < 6 GeV/c, which decreases towards more central collisions (10%-30% and 0%-10% classes). The positive v(2) is also reflected in the nuclear modification factor, which shows a stronger suppression in the direction orthogonal to the reaction plane formidcentral collisions. The measurements are compared to theoretical calculations of charm-quark transport and energy loss in high-density strongly interacting matter at high temperature. The models that include substantial elastic interactions with an expanding medium provide a good description of the observed anisotropy. However, they are challenged to simultaneously describe the strong suppression of high-pT yield of D mesons in central collisions and their azimuthal anisotropy in noncentral collisions.
The ALICE Collaboration at the LHC reports measurement of the inclusive production cross section of electrons from semi-leptonic decays of beauty hadrons with rapidity |y| < 0.8 and transverse momentum 1 < p(T)< 10 GeV/c, in pp collisions at root s = 2.76 TeV. Electrons not originating from semi-electronic decay of beauty hadrons are suppressed using the impact parameter of the corresponding tracks. The production cross section of beauty decay electrons is compared to the result obtained with an alternative method which uses the distribution of the azimuthal angle between heavy-flavour decay electrons and charged hadrons. Perturbative QCD predictions agree with the measured cross section within the experimental and theoretical uncertainties. The integrated visible cross section, sigma(b -> e) = 3.47 +/- 0.40(stat)(+1.12)(-1.33)(sys) +/- 0.07(norm) mu b, was extrapolated to full phase space using Fixed Order plus Next-to-Leading Log (FONLL) calculations to obtain the total b (b) over bar production cross section, sigma(b (b) over bar) = 130 +/- 15.1(stat)(+42.1)(-49.8)(sys)(+3.4)(-3.1)(extr) +/- 2.5(norm) +/- 4.4(BR) mu b. (C) 2014 The Authors. Published by Elsevier B.V.
This is an addendum to the article JHEP 11 (2015) 205 [1]. The figures 3 (right), 4 (right) and 5 are updated with published results on non-prompt J/psi-meson production from the CMS collaboration [2].
The nuclear modification factor, R-AA, of the prompt charmed mesons D-0, D+ and D*+, and their antiparticles, was measured with the ALICE detector in Pb-Pb collisions at a centre-of-mass energy root s(NN) = 2 : 76 TeV in two transverse momentum intervals, 5 < p(T) < 8 GeV/c and 8 < p(T) < 16 GeV/c, and in six collision centrality classes. The R-AA shows a maximum suppression of a factor of 56 in the 10% most central collisions. The suppression and its centrality dependence are compatible within uncertainties with those of charged pions. A comparison with the R-AA of non-prompt J/psi from B meson decays, measured by the CMS Collaboration, hints at a larger suppression of D mesons in the most central collisions.
We present a measurement of inclusive J/psi production in p-Pb collisions at root S-NN = 5.02 TeV as a function of the centrality of the collision, as estimated from the energy deposited in the Zero Degree Calorimeters. The measurement is performed with the ALICE detector down to zero transverse momentum, p(T), in the backward (-4.46 < y(cms) < -2.96) and forward (2.03 < y(cms) < 3.53) rapidity intervals in the dimuon decay channel and in the mid-rapidity region (-1.37 < y(cms) < 0.43) in the dielectron decay channel. The backward and forward rapidity intervals correspond to the Pb-going and p-going direction, respectively. The p(T)-differential J/psi production cross section at backward and forward rapidity is measured for several centrality classes, together with the corresponding average p(T) and p(T)(2) values. The nuclear modification factor is presented as a function of centrality for the three rapidity intervals, and as a function of p(T) for several centrality classes at backward and forward rapidity. At mid-and forward rapidity, the J/psi yield is suppressed up to 40% compared to that in pp interactions scaled by the number of binary collisions. The degree of suppression increases towards central p-Pb collisions at forward rapidity, and with decreasing p(T) of the J/psi. At backward rapidity, the nuclear modification factor is compatible with unity within the total uncertainties, with an increasing trend from peripheral to central p-Pb collisions.
We report measurements of the primary charged-particle pseudorapidity density and transverse momentum distributions in p-Pb collisions at root s(NN) = 5.02 TeV and investigate their correlation with experimental observables sensitive to the centrality of the collision. Centrality classes are defined by using different event-activity estimators, i.e., charged-particle multiplicities measured in three different pseudorapidity regions as well as the energy measured at beam rapidity (zero degree). The procedures to determine the centrality, quantified by the number of participants (N-part) or the number of nucleon-nucleon binary collisions (N-coll) are described. We show that, in contrast to Pb-Pb collisions, in p-Pb collisions large multiplicity fluctuations together with the small range of participants available generate a dynamical bias in centrality classes based on particle multiplicity. We propose to use the zero-degree energy, which we expect not to introduce a dynamical bias, as an alternative event-centrality estimator. Based on zero-degree energy-centrality classes, the N-part dependence of particle production is studied. Under the assumption that the multiplicity measured in the Pb-going rapidity region scales with the number of Pb participants, an approximate independence of the multiplicity per participating nucleon measured at mid-rapidity of the number of participating nucleons is observed. Furthermore, at high-pT the p-Pb spectra are found to be consistent with the pp spectra scaled by N-coll for all centrality classes. Our results represent valuable input for the study of the event-activity dependence of hard probes in p-Pb collisions and, hence, help to establish baselines for the interpretation of the Pb-Pb data.
In this paper measurements are presented of pi(+/-), K-+/-, p, and (p) over bar production at midrapidity (vertical bar y vertical bar < 0.5), in Pb-Pb collisions at root s(NN) = 2.76 TeV as a function of centrality. The measurement covers the transverse-momentum (p(T)) range from 100, 200, and 300 MeV/c up to 3, 3, and 4.6 GeV/c for pi, K, and p, respectively. The measured p(T) distributions and yields are compared to expectations based on hydrodynamic, thermal and recombination models. The spectral shapes of central collisions show a stronger radial flow than measured at lower energies, which can be described in hydrodynamic models. In peripheral collisions, the p(T) distributions are not well reproduced by hydrodynamic models. Ratios of integrated particle yields are found to be nearly independent of centrality. The yield of protons normalized to pions is a factor similar to 1.5 lower than the expectation from thermal models.
We report on the measurement of freeze-out radii for pairs of identical-charge pions measured in Pb-Pb collisions at root s(NN) = 2.76 TeV as a function of collision centrality and the average transverse momentum of the pair k(T). Three-dimensional sizes of the system (femtoscopic radii), as well as direction-averaged one-dimensional radii are extracted. The radii decrease with k(T), following a power-law behavior. This is qualitatively consistent with expectations from a collectively expanding system, produced in hydrodynamic calculations. The radii also scale linearly with < dN(ch)/d eta >(1/3). This behavior is compared to world data on femtoscopic radii in heavy-ion collisions. While the dependence is qualitatively similar to results at smaller root s(NN), a decrease in the ratio R-out/R-side is seen, which is in qualitative agreement with a specific prediction from hydrodynamic models: a change from inside-out to outside-in freeze-out configuration. The results provide further evidence for the production of a collective, strongly coupled system in heavy-ion collisions at the CERN Large Hadron Collider.
The pseudorapidity density of charged particles, dN(ch)=d eta, at midrapidity in Pb-Pb collisions has been measured at a center-of-mass energy per nucleon pair of root(NN)-N-s p = 5.02 TeV. For the 5% most central collisions, we measure a value of 1943 +/- 54. The rise in dNch= d. as a function of root(NN)-N-s p is steeper than that observed in proton-proton collisions and follows the trend established by measurements at lower energy. The increase of dNch= d. as a function of the average number of participant nucleons, hNparti, calculated in a Glauber model, is compared with the previous measurement at root(NN)-N-s p = 2.76 TeV. A constant factor of about 1.2 describes the increase in dNch= d. from root(NN)-N-s p = 2.76 to 5.02 TeV for all centrality classes, within the measured range of 0%-80% centrality. The results are also compared to models based on different mechanisms for particle production in nuclear collisions.
Transverse momentum (p(T)) spectra of pions, kaons, and protons up to p(T) = 20 GeV/c have been measured in Pb-Pb collisions at root s(NN) = 2.76 TeV using the ALICE detector for six different centrality classes covering 0%-80%. The proton-to-pion and the kaon-to-pion ratios both show a distinct peak at p(T) approximate to 3 GeV/c in central Pb-Pb collisions that decreases for more peripheral collisions. For p(T) > 10 GeV/c, the nuclear modification factor is found to be the same for all three particle species in each centrality interval within systematic uncertainties of 10%-20%. This suggests there is no direct interplay between the energy loss in the medium and the particle species composition in the hard core of the quenched jet. For p(T) < 10 GeV/c, the data provide important constraints for models aimed at describing the transition from soft to hard physics.
The centrality dependence of the charged-particle multiplicity density at midrapidity in Pb-Pb collisions at root s(NN) = 2: 76 TeV is presented. The charged-particle density normalized per participating nucleon pair increases by about a factor of 2 from peripheral (70%-80%) to central (0%-5%) collisions. The centrality dependence is found to be similar to that observed at lower collision energies. The data are compared with models based on different mechanisms for particle production in nuclear collisions.
This publication describes the methods used to measure the centrality of inelastic Pb-Pb collisions at a center-of-mass energy of 2.76 TeV per colliding nucleon pair with ALICE. The centrality is a key parameter in the study of the properties of QCD matter at extreme temperature and energy density, because it is directly related to the initial overlap region of the colliding nuclei. Geometrical properties of the collision, such as the number of participating nucleons and the number of binary nucleon-nucleon collisions, are deduced from a Glauber model with a sharp impact parameter selection and shown to be consistent with those extracted from the data. The centrality determination provides a tool to compare ALICE measurements with those of other experiments and with theoretical calculations.
We present the charged-particle pseudorapidity density in Pb-Pb collisions at root s(NN) = 5.02 TeV in centrality classes measured by ALICE. The measurement covers a wide pseudorapidity range from -3.5 to 5, which is sufficient for reliable estimates of the total number of charged particles produced in the collisions. For the most central (0-5%) collisions we find 21 400 +/- 1 300, while for the most peripheral (80-90%) we find 230 +/- 38. This corresponds to an increase of (27 +/- 4)% over the results at root s(NN) = 2.76 TeV previously reported by ALICE. The energy dependence of the total number of charged particles produced in heavy-ion collisions is found to obey a modified power-law like behaviour. The charged-particle pseudorapidity density of the most central collisions is compared to model calculations-none of which fully describes the measured distribution. We also present an estimate of the rapidity density of charged particles. The width of that distribution is found to exhibit a remarkable proportionality to the beam rapidity, independent of the collision energy from the top SPS to LHC energies. (C) 2017 The Author(s). Published by Elsevier B.V.
A detailed study of pseudorapidity densities and multiplicity distributions of primary charged particles produced in proton-proton collisions, atv root s = 0.9, 2.36, 2.76, 7 and 8 TeV, in the pseudorapidity range vertical bar n vertical bar< 2, was carried out using the ALICE detector. Measurements were obtained for three event classes: inelastic, non-single diffractive and events with at least one charged particle in the pseudorapidity interval vertical bar n vertical bar<1. The use of an improved track-counting algorithm combined with ALICE's measurements of diffractive processes allows a higher precision compared to our previous publications. A KNO scaling study was performed in the pseudorapidity intervals vertical bar n vertical bar< 0.5, 1.0 and 1.5. The data are compared to other experimental results and to models as implemented in Monte Carlo event generators PHOJET and recent tunes of PYTHIA6, PYTHIA8 and EPOS.
We present the charged-particle multiplicity distributions over a wide pseudorapidity range (-3.4<eta<5.0) for pp collisions at root s = 0.9, 7, and 8 TeV at the LHC. Results are based on information from the Silicon Pixel Detector and the Forward Multiplicity Detector of ALICE, extending the pseudorapidity coverage of the earlier publications and the high-multiplicity reach. The measurements are compared to results from the CMS experiment and to PYTHIA, PHOJET and EPOS LHC event generators, as well as IP-Glasma calculations.
The differential charged jet cross sections, jet fragmentation distributions, and jet shapes are measured in minimum bias proton-proton collisions at center-of-mass energy root s = 7 TeV using the ALICE detector at the LHC. Jets are reconstructed from charged particle momenta in the midrapidity region using the sequential recombination k(T) and anti-k(T) as well as the SISCone jet finding algorithms with several resolution parameters in the range R = 0.2-0.6. Differential jet production cross sections measured with the three jet finders are in agreement in the transverse momentum (p(T)) interval 20 < p(T)(jet,ch) < 100 GeV/c. They are also consistent with prior measurements carried out at the LHC by the ATLAS Collaboration. The jet charged particle multiplicity rises monotonically with increasing jet p(T), in qualitative agreement with prior observations at lower energies. The transverse profiles of leading jets are investigated using radial momentum density distributions as well as distributions of the average radius containing 80% (< R-80 >) of the reconstructed jet p(T). The fragmentation of leading jets with R = 0.4 using scaled p(T) spectra of the jet constituents is studied. The measurements are compared to model calculations from event generators (PYTHIA, PHOJET, HERWIG). The measured radial density distributions and < R-80 > distributions are well described by the PYTHIA model (tune Perugia-2011). The fragmentation distributions are better described by HERWIG.
We report on measurements of a charge-dependent flow using a novel three-particle correlator with ALICE in Pb-Pb collisions at the CERN Large Hadron Collider (LHC), and discuss the implications for observation of local parity violation and the chiral magnetic wave (CMW) in heavy-ion collisions. Charge-dependent flow is reported for different collision centralities as a function of the event charge asymmetry. While our results are in qualitative agreement with expectations based on the CMW, the nonzero signal observed in higher harmonics correlations indicates a possible significant background contribution. We also present results on a differential correlator, where the flow of positive and negative charges is reported as a function of the mean charge of the particles and their pseudorapidity separation. We argue that this differential correlator is better suited to distinguish the differences in positive and negative charges expected due to the CMW and the background effects, such as local charge conservation coupled with strong radial and anisotropic flow.
The ALICE Collaboration has made the first measurement at the LHC of J/psi photoproduction in ultra-peripheral Pb-Pb collisions at root s(NN) = 2.76 TeV. The J/psi is identified via its dimuon decay in the forward rapidity region with the muon spectrometer for events where the hadronic activity is required to be minimal. The analysis is based on an event sample corresponding to an integrated luminosity of about 55 mu b(-1). The cross section for coherent J/psi production in the rapidity interval -3.6 < y < -2.6 is measured to be d sigma(coh)(J/psi)/dy = 1.00 +/- 0.18(stat)(-0.26)(+0.24)(syst) mb. The result is compared to theoretical models for coherent J/psi production and found to be in good agreement with those models which include nuclear gluon shadowing. (C) 2012 CERN. Published by Elsevier B.V. All rights reserved.
We have performed the first measurement of the coherent psi(2S) photo-production cross section in ultraperipheral Pb-Pb collisions at the LHC. This charmonium excited state is reconstructed via the psi(2S) -> l(+)l(-) and ->(2S) -> J/psi pi(+)pi(-) decays, where the J/psi decays into two leptons. The analysis is based on an event sample corresponding to an integrated luminosity of about 22 mu b(-1). The cross section for coherent psi(2S) production in the rapidity interval -0.9 < y < 0.9is d sigma(coh)(psi(2S))/dy = 0.83 +/- 0.19 (stat+syst) mb. The psi(2S) to J/psi coherent cross section ratio is 0.34(-0.07)(+0.08)(stat+syst). The obtained results are compared to predictions from theoretical models. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V.
We report the first measurement at the LHC of coherent photoproduction of rho(0) mesons in ultra-peripheral Pb-Pb collisions. The invariant mass and transverse momentum distributions for rho(0) production are studied in the pi(+)pi(-) decay channel at mid-rapidity. The production cross section in the rapidity range vertical bar y vertical bar < 0.5 is found to be d sigma/dy = 425 +/- 10 (stat.) (+42)(-50) (sys.) mb. Coherent rho(0) production is studied with and without requirement of nuclear breakup, and the fractional yields for various breakup scenarios are presented. The results are compared with those from lower energies and with model predictions.
We report the measurements of correlations between event-by-event fluctuations of amplitudes of anisotropic flow harmonics in nucleus-nucleus collisions, obtained for the first time using a new analysis method based on multiparticle cumulants in mixed harmonics. This novel method is robust against systematic biases originating from nonflow effects and by construction any dependence on symmetry planes is eliminated. We demonstrate that correlations of flow harmonics exhibit a better sensitivity to medium properties than the individual flow harmonics. The new measurements are performed in Pb-Pb collisions at the center-of-mass energy per nucleon pair of root S-NN = 2.76 TeV by the ALICE experiment at the Large Hadron Collider. The centrality dependence of correlation between event-by-event fluctuations of the elliptic upsilon 2 and quadrangular upsilon 4 flow harmonics, as well as of anticorrelation between upsilon 2 and triangular upsilon 3 flow harmonics are presented. The results cover two different regimes of the initial state configurations: geometry dominated (in midcentral collisions) and fluctuation dominated (in the most central collisions). Comparisons are made to predictions from Monte Carlo Glauber, viscous hydrodynamics, AMPT, and HIJING models. Together with the existing measurements of the individual flow harmonics the presented results provide further constraints on the initial conditions and the transport properties of the system produced in heavy-ion collisions.
Azimuthally anisotropic distributions of D-0, D+, and D*+ mesons were studied in the central rapidity region (vertical bar y vertical bar < 0.8) in Pb-Pb collisions at a center-of-mass energy root(S)(NN) = 2.76 TeV per nucleon-nucleon collision, with the ALICE detector at the LHC. The second Fourier coefficient upsilon(2) (commonly denoted elliptic flow) was measured in the centrality class 30%-50% as a function of the D meson transverse momentum p(T), in the range 2-16 GeV/c. The measured upsilon(2) of D mesons is comparable in magnitude to that of light-flavor hadrons. It is positive in the range 2 < p(T) < 6 GeV/c with 5.7 sigma significance, based on the combination of statistical and systematic uncertainties.
The azimuthal anisotropy coefficient v(2) of prompt D-0, D+, D*+, and D-s(+) mesons was measured in midcentral (30%-50% centrality class) Pb-Pb collisions at a center-of-mass energy per nucleon pair root s(NN)=5.02 TeV, with the ALICE detector at the LHC. The D mesons were reconstructed via their hadronic decays at midrapidity, |y| < 0.8, in the transverse momentum interval 1 < p(T) < 24 GeV/c. The measured D-meson v(2) has similar values as that of charged pions. The D-s(+) v(2), measured for the first time, is found to be compatible with that of nonstrange D mesons. The measurements are compared with theoretical calculations of charm-quark transport in a hydrodynamically expanding medium and have the potential to constrain medium parameters.
Background: In the context of the investigation of the quark gluon plasma produced in heavy-ion collisions, hadrons containing heavy (charm or beauty) quarks play a special role for the characterization of the hot and dense medium created in the interaction. The measurement of the production of charm and beauty hadrons in proton-proton collisions, besides providing the necessary reference for the studies in heavy-ion reactions, constitutes an important test of perturbative quantum chromodynamics (pQCD) calculations. Heavy-flavor production in proton-nucleus collisions is sensitive to the various effects related to the presence of nuclei in the colliding system, commonly denoted cold-nuclear-matter effects. Most of these effects are expected to modify open-charm production at low transverse momenta (p(T)) and, so far, no measurement of D-meson production down to zero transverse momentum was available at mid-rapidity at the energies attained at the CERN Large Hadron Collider (LHC). Purpose: The measurements of the production cross sections of promptly produced charmed mesons in p-Pb collisions at the LHC down to p(T) = 0 and the comparison to the results from pp interactions are aimed at the assessment of cold-nuclear-matter effects on open-charm production, which is crucial for the interpretation of the results from Pb-Pb collisions. The prompt charmed mesons D-0, D+, D*+, and D-s(+) were measured at mid-rapidity in p-Pb collisions at a center-of-mass energy per nucleon pair root S-NN = 5.02 TeV with the ALICE detector at the LHC. D mesons were reconstructed from their decays D-0 -> K- pi(+), D+ -> K- pi(+) pi(+), D*+ -> D-0 pi(+), D-S(+) -> phi pi(+) -> K- K+ pi(+), and their charge conjugates, using an analysis method based on the selection of decay topologies displaced from the interaction vertex. In addition, the prompt D 0 production cross section was measured in pp collisions at root S = 7 TeV and p-Pb collisions at root S-NN = 5.02 TeV down to p(T) = 0 using an analysis technique that is based on the estimation and subtraction of the combinatorial background, without reconstruction of the D-0 decay vertex. Results: The production cross section in pp collisions is described within uncertainties by different implementations of pQCD calculations down to p(T) = 0. This allowed also a determination of the total c (c) over bar production cross section in pp collisions, which is more precise than previous ALICE measurements because it is not affected by uncertainties owing to the extrapolation to pT = 0. The nuclear modification factor R-pPb( p(T)), defined as the ratio of the p(T)-differential D meson cross section in p-Pb collisions and that in pp collisions scaled by the mass number of the Pb nucleus, was calculated for the four D-meson species and found to be compatible with unity within uncertainties. The results are compared to theoretical calculations that include cold-nuclear-matter effects and to transport model calculations incorporating the interactions of charm quarks with an expanding deconfined medium. Conclusions: These measurements add experimental evidence that the modification of the D-meson transverse momentum distributions observed in Pb-Pb collisions with respect to pp interactions is due to strong final-state effects induced by the interactions of the charm quarks with the hot and dense partonic medium created in ultrarelativistic heavy-ion collisions. The current precision of the measurement does not allow us to draw conclusions on the role of the different cold-nuclear-matter effects and on the possible presence of additional hot-medium effects in p-Pb collisions. However, the analysis technique without decay-vertex reconstruction, applied on future larger data samples, should provide access to the physics-rich range down to p(T) = 0.
The P-T-differential inclusive production cross section of the prompt charm-strange meson D-s(+) in the rapidity range vertical bar y vertical bar < 0.5 was measured in proton-proton collisions at root s = 7 TeV at the LHC using the ALICE detector. The analysis was performed on a data sample of 2.98 x 10(8) events collected with a minimum-bias trigger. The corresponding integrated luminosity is L-int = 4.8 nb(-1). Reconstructing the decay D-s(+) -> phi pi(+) with phi -> K-K+, and its charge conjugate, about 480 D-s(+/-) mesons were counted, after selection cuts, in the transverse momentum range 2 < P-T < 12 GeV/c. The results are compared with predictions from models based on perturbative QCD. The ratios of the cross sections of four D meson species (namely D-0, D+, D*+ and D-s(+)) were determined both as a function of p(T) and integrated over p(T)after extrapolating to full p(T) range, together with the strangeness suppression factor in charm fragmentation. The obtained values are found to be compatible within uncertainties with those measured by other experiments in e(+)e(-), ep and pp interactions at various centre-of-mass energies. (C) 2012 CERN. Published by Elsevier By. All rights reserved.
Particle identification is an important feature of the ALICE detector at the LHC. In particular, for particle identification via the time-of-flight technique, the precise determination of the event collision time represents an important ingredient of the quality of the measurement. In this paper, the different methods used for such a measurement in ALICE by means of the T0 and the TOF detectors are reviewed. Efficiencies, resolution and the improvement of the particle identification separation power of the methods used are presented for the different LHC colliding systems (pp, p-Pb and Pb-Pb) during the first period of data taking of LHC (Run 1).
The production of J/psi and psi (2S) was studied with the ALICE detector in Pb-Pb collisions at the LHC. The measurement was performed at forward rapidity (2.5 < y < 4) down to zero transverse momentum (p(T)) in the dimuon decay channel. Inclusive J/psi yields were extracted in different centrality classes and the centrality dependence of the average p(T) is presented. The J/psi suppression, quantified with the nuclear modification factor (R-AA), was measured as a function of centrality, transverse momentum and rapidity. Comparisons with similar measurements at lower collision energy and theoretical models indicate that the J/psi production is the result of an interplay between color screening and recombination mechanisms in a deconfined partonic medium, or at its hadronization. Results on the psi(2S) suppression are provided via the ratio of psi(2S) over J/psi measured in pp and Pb-Pb collisions.
Direct photon production at mid-rapidity in Pb-Pb collisions at root s(NN) = 2.76 TeV was studied in the transverse momentum range 0.9 < p(T) < 14 GeV/c. Photons were detected with the highly segmented electromagnetic calorimeter PHOS and via conversions in the ALICE detector material with the e(+)e(-) pair reconstructed in the central tracking system. The results of the two methods were combined and direct photon spectra were measured for the 0-20%, 20-40%, and 40-80% centrality classes. For all three classes, agreement was found with perturbative QCD calculations for p(T) greater than or similar to 5 GeV/c. Direct photon spectra down to p(T) approximate to 1 GeV/c could be extracted for the 20-40% and 0-20% centrality classes. The significance of the direct photon signal for 0.9 < p(T) < 2.1 GeV/c is 2.6 sigma for the 0-20% class. The spectrum in this p(T) range and centrality class can be described by an exponential with an inverse slope parameter of (297 +/- 12(stat) +/- 41(syst)) MeV. State-of-the-art models for photon production in heavy-ion collisions agree with the data within uncertainties. (C) 2016 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V.
The directed flow of charged particles at midrapidity is measured in Pb-Pb collisions at root s(NN) p 2: 76 TeV relative to the collision symmetry plane defined by the spectator nucleons. A negative slope of the rapidity-odd directed flow component with approximately 3 times smaller magnitude than found at the highest RHIC energy is observed. This suggests a smaller longitudinal tilt of the initial system and disfavors the strong fireball rotation predicted for the LHC energies. The rapidity-even directed flow component is measured for the first time with spectators and found to be independent of pseudorapidity with a sign change at transverse momenta p(T) between 1.2 and 1: 7 GeV/c. Combined with the observation of a vanishing rapidity-even p(T) shift along the spectator deflection this is strong evidence for dipolelike initial density fluctuations in the overlap zone of the nuclei. Similar trends in the rapidity-even directed flow and the estimate from two-particle correlations at midrapidity, which is larger by about a factor of 40, indicate a weak correlation between fluctuating participant and spectator symmetry planes. These observations open new possibilities for investigation of the initial conditions in heavy-ion collisions with spectator nucleons.
The elliptic flow of electrons from heavy-flavour hadron decays at mid-rapidity (|y| < 0.7) is measured in Pb-Pb collisions at TeV with ALICE at the LHC. The particle azimuthal distribution with respect to the reaction plane can be parametrized with a Fourier expansion, where the second coefficient (v (2)) represents the elliptic flow. The v (2) coefficient of inclusive electrons is measured in three centrality classes (0-10%, 10-20% and 20-40%) with the event plane and the scalar product methods in the transverse momentum (p (T)) intervals 0.5-13 GeV/c and 0.5-8 GeV/c, respectively. After subtracting the background, mainly from photon conversions and Dalitz decays of neutral mesons, a positive v (2) of electrons from heavy-flavour hadron decays is observed in all centrality classes, with a maximum significance of 5.9 sigma in the interval 2 < p (T) < 2.5 GeV/c in semi-central collisions (20-40%). The value of v (2) decreases towards more central collisions at low and intermediate p (T) (0.5 < p (T) < 3 GeV/c). The v (2) of electrons from heavy-flavour hadron decays at mid-rapidity is found to be similar to the one of muons from heavy-flavour hadron decays at forward rapidity (2.5 < y < 4). The results are described within uncertainties by model calculations including substantial elastic interactions of heavy quarks with an expanding strongly-interacting medium.
The elliptic flow coefficient (v(2)) of identified particles in Pb-Pb collisions at root s(NN) = 2.76 TeV was measured with the ALICE detector at the Large Hadron Collider (LHC). The results were obtained with the Scalar Product method, a two-particle correlation technique, using a pseudo-rapidity gap of |Delta eta| > 0.9 between the identified hadron under study and the reference particles. The v (2) is reported for pi(+/-), K-+/-, K-S(0), p+(p) over bar, phi, Lambda+(Lambda) over bar, Xi+(Xi) over bar (+) and Omega(-)+(Omega) over bar (+) in several collision centralities. In the low transverse momentum (p(T)) region, p(T) < 3 GeV/c, v(2)(p(T)) exhibits a particle mass dependence consistent with elliptic flow accompanied by the transverse radial expansion of the system with a common velocity field. The experimental data for pi (+/-) and the combined K-+/- and K-S(0) results, are described fairly well by hydrodynamic calculations coupled to a hadronic cascade model (VISHNU) for central collisions. However, the same calculations fail to reproduce the v(2)(p(T)) for p+(p) over bar, phi, Lambda+(Lambda) over bar, Xi+(Xi) over bar (+). For transverse momentum values larger than about 3 GeV/c, particles tend to group according to their type, i.e. mesons and baryons. The present measurements exhibit deviations from the number of constituent quark (NCQ) scaling at the level of +/- 20% for p(T) > 3 GeV/c.
The elliptic flow, v(2), of muons from heavy-flavour hadron decays at forward rapidity (2.5 < y < 4) is measured in Pb-Pb collisions at root s(NN)= 2.76TeVwith the ALICE detector at the LHC. The scalar product, two- and four-particle Q cumulants and Lee-Yang zeros methods are used. The dependence of the v(2) of muons from heavy-flavour hadron decays on the collision centrality, in the range 0-40%, and on transverse momentum, p(T), is studied in the interval 3 < p(T)< 10 GeV/c. A positive v(2) is observed with the scalar product and two-particle Q cumulants in semi-central collisions (10-20% and 20-40% centrality classes) for the p(T) interval from 3 to about 5GeV/c with a significance larger than 3 sigma, based on the combination of statistical and systematic uncertainties. The v(2) magnitude tends to decrease towards more central collisions and with increasing pT. It becomes compatible with zero in the interval 6 < p(T)< 10 GeV/c. The results are compared to models describing the interaction of heavy quarks and open heavy-flavour hadrons with the high-density medium formed in high-energy heavy-ion collisions. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V.
We present results on transverse momentum (p(T)) and rapidity (y) differential production cross sections, mean transverse momentum and mean transverse momentum square of inclusive J/psi and psi(2S) at forward rapidity (2.5 < y < 4) as well as psi(2S)-to-J/psi cross section ratios. These quantities are measured in pp collisions at center of mass energiesv root s = 5.02 and 13 TeV with the ALICE detector. Both charmonium states are reconstructed in the dimuon decay channel, using the muon spectrometer. Acomprehensive comparison to inclusive charmonium cross sections measured at root s = 2.76, 7 and 8 TeV is performed. A comparison to non-relativistic quantum chromodynamics and fixed-order next-to-leading logarithm calculations, which describe prompt and non-prompt charmonium production respectively, is also presented. A good description of the data is obtained over the full p(T) range, provided that both contributions are summed. In particular, it is found that for p(T) > 15 GeV/c the non-prompt contribution reaches up to 50% of the total charmonium yield.
At sufficiently high temperature and energy density, nuclear matter undergoes a transition to a phase in which quarks and gluons are not confined: the quark-gluon plasma (QGP)(1). Such an exotic state of strongly interacting quantum chromodynamics matter is produced in the laboratory in heavy nuclei high-energy collisions, where an enhanced production of strange hadrons is observed(2-6). Strangeness enhancement, originally proposed as a signature of QGP formation in nuclear collisions(7), is more pronounced for multi-strange baryons. Several effects typical of heavy-ion phenomenology have been observed in high-multiplicity proton-proton (pp) collisions(8,9), but the enhanced production of multi-strange particles has not been reported so far. Here we present the first observation of strangeness enhancement in high-multiplicity proton-proton collisions. We find that the integrated yields of strange and multi-strange particles, relative to pions, increases significantly with the event charged-particle multiplicity. The measurements are in remarkable agreement with the p-Pb collision results(10,11), indicating that the phenomenon is related to the final system created in the collision. In high-multiplicity events strangeness production reaches values similar to those observed in Pb-Pb collisions, where a QGP is formed.
Event-by-event fluctuations of the mean transverse momentum of charged particles produced in pp collisions at root s = 0.9, 2.76 and 7 TeV, and Pb-Pb collisions at root S-NN = 2.76 TeV are studied as a function of the charged-particle multiplicity using the ALICE detector at the LHC. Dynamical fluctuations indicative of correlated particle emission are observed in all systems. The results in pp collisions show little dependence on collision energy. The Monte Carlo event generators PYTHIA and PHOJET are in qualitative agreement with the data. Peripheral Pb-Pb data exhibit a similar-multiplicity dependence as that observed in pp. In central Pb-Pb, the results deviate from this trend, featuring a significant reduction of the fluctuation strength. The results in Pb-Pb are in qualitative agreement with previous measurements in Au-Au at lower collision energies and with expectations from models that incorporate collective phenomena.
We report on results obtained with the event-shape engineering technique applied to Pb-Pb collisions at root s(NN) = 2.76 TeV. By selecting events in the same centrality interval, but with very different average flow, different initial-state conditions can be studied. We find the effect of the event-shape selection on the elliptic flow coefficient v(2) to be almost independent of transverse momentum p(T), which is as expected if this effect is attributable to fluctuations in the initial geometry of the system. Charged-hadron, -pion, -kaon, and -proton transverse momentum distributions are found to be harder in events with higher-than-average elliptic flow, indicating an interplay between radial and elliptic flow.
In two-particle angular correlation measurements, jets give rise to a near-side peak, formed by particles associated to a higher-p(T) trigger particle. Measurements of these correlations as a function of pseudorapidity (Delta eta) and azimuthal (Delta phi) differences are used to extract the centrality and p(T) dependence of the shape of the near-side peak in the p(T) range 1 < p(T) < 8 GeV/c in Pb-Pb and pp collisions at root s(NN) = 2.76 TeV. A combined fit of the near-side peak and long-range correlations is applied to the data and the peak shape is quantified by the variance of the distributions. While the width of the peak in the Delta phi direction is almost independent of centrality, a significant broadening in the Delta eta direction is found from peripheral to central collisions. This feature is prominent for the low-p(T) region and vanishes above 4 GeV/c. The widths measured in peripheral collisions are equal to those in pp collisions in the Delta phi direction and above 3 GeV/c in the Delta eta direction. Furthermore, for the 10% most central collisions and 1 < p(T, assoc) < 2 GeV/c, 1 < p(T,trig) < 3 GeV/c, a departure from a Gaussian shape is found: a depletion develops around the center of the peak. The results are compared to A Multi-Phase Transport (AMPT) model simulation as well as other theoretical calculations indicating that the broadening and the development of the depletion are connected to the strength of radial and longitudinal flow.
We present the first measurement at the LHC of exclusive J/psi photoproduction off protons, in ultraperipheral proton-lead collisions at root s(NN) = 5.02 TeV. Events are selected with a dimuon pair produced either in the rapidity interval, in the laboratory frame, 2.5 < y < 4 (p-Pb) or -3.6 < y < -2.6 (Pb-p), and no other particles observed in the ALICE acceptance. The measured cross sections sigma(gamma + p -> J/psi + p) are 33.2 +/- 2.2(stat) +/- 3.2(syst) +/- 0.7(theor) nb in p-Pb and 284 +/- 36(stat)(-32)(+27)(syst) +/- 26(theor) nb in Pb-p collisions. We measure this process up to about 700 GeV in the gamma p center of mass, which is a factor of two larger than the highest energy studied at HERA. The data are consistent with a power law dependence of the J/psi photoproduction cross section in gamma p energies from about 20 to 700 GeV, or equivalently, from Bjorken x scaling variable between similar to 2 x 10(-2) and similar to 2 x 10(-5), thus indicating no significant change in the gluon density behavior of the proton between HERA and LHC energies.
We report on the high statistics two-pion correlation functions from pp collisions at root s = 0.9 TeV and root s = 7 TeV, measured by the ALICE experiment at the Large Hadron Collider. The correlation functions as well as the extracted source radii scale with event multiplicity and pair momentum. When analyzed in the same multiplicity and pair transverse momentum range, the correlation is similar at the two collision energies. A three-dimensional femtoscopic analysis shows an increase of the emission zone with increasing event multiplicity as well as decreasing homogeneity lengths with increasing transverse momentum. The latter trend gets more pronounced as multiplicity increases. This suggests the development of space-momentum correlations, at least for collisions producing a high multiplicity of particles. We consider these trends in the context of previous femtoscopic studies in high-energy hadron and heavy-ion collisions and discuss possible underlying physics mechanisms. Detailed analysis of the correlation reveals an exponential shape in the outward and longitudinal directions, while the sideward remains a Gaussian. This is interpreted as a result of a significant contribution of strongly decaying resonances to the emission region shape. Significant nonfemtoscopic correlations are observed, and are argued to be the consequence of "mini-jet"-like structures extending to low p(t). They are well reproduced by the Monte-Carlo generators and seen also in pi(+)pi(-) correlations.
We present the first measurement of the two-particle transverse momentum differential correlation function, P-2 = <Delta pT Delta p(T)>/ < p(T)>(2), in Pb-Pb collisions at root s(NN) = 2.76 TeV. Results for P-2 are reported as a function of the relative pseudorapidity (Delta eta) and azimuthal angle (Delta phi) between two particles for different collision centralities. The Delta phi dependence is found to be largely independent of Delta eta for broken vertical bar Delta eta broken vertical bar >= 0.9. In the 5% most central Pb-Pb collisions, the two-particle transverse momentum correlation function exhibits a clear double-hump structure around Delta phi=pi (i. e., on the away side), which is not observed in number correlations in the same centrality range, and thus provides an indication of the dominance of triangular flow in this collision centrality. Fourier decompositions of P-2, studied as a function of the collision centrality, show that correlations at broken vertical bar Delta eta broken vertical bar >= 0.9 can be well reproduced by a flow ansatz based on the notion that measured transverse momentum correlations are strictly determined by the collective motion of the system.
The strength of forward-backward (FB) multiplicity correlations is measured by the ALICE detector in proton-proton (pp) collisions at = 0.9, 2.76 and 7 TeV. The measurement is performed in the central pseudorapidity region (|eta| < 0.8) for the transverse momentum p (T) > 0.3 GeV/c. Two separate pseudorapidity windows of width (delta eta) ranging from 0.2 to 0.8 are chosen symmetrically around eta = 0. The multiplicity correlation strength (b (corr)) is studied as a function of the pseudorapidity gap (eta (gap)) between the two windows as well as the width of these windows. The correlation strength is found to decrease with increasing eta (gap) and shows a non-linear increase with delta eta. A sizable increase of the correlation strength with the collision energy, which cannot be explained exclusively by the increase of the mean multiplicity inside the windows, is observed. The correlation coefficient is also measured for multiplicities in different configurations of two azimuthal sectors selected within the symmetric FB eta-windows. Two different contributions, the short-range (SR) and the long-range (LR), are observed. The energy dependence of b (corr) is found to be weak for the SR component while it is strong for the LR component. Moreover, the correlation coefficient is studied for particles belonging to various transverse momentum intervals chosen to have the same mean multiplicity. Both SR and LR contributions to b (corr) are found to increase with p (T) in this case. Results are compared to PYTHIA and PHOJET event generators and to a string-based phenomenological model. The observed dependencies of b (corr) add new constraints on phenomenological models.
We report on the first measurement of the triangular v3, quadrangular v4, and pentagonal v5 charged particle flow in Pb-Pb collisions at sqrt(sNN) = 2.76 TeV measured with the ALICE detector at the CERN Large Hadron Collider. We show that the triangular flow can be described in terms of the initial spatial anisotropy and its fluctuations, which provides strong constraints on its origin. In the most central events, where the elliptic flow v2 and v3 have similar magnitude, a double peaked structure in the two-particle azimuthal correlations is observed, which is often interpreted as a Mach cone response to fast partons. We show that this structure can be naturally explained from the measured anisotropic flow Fourier coefficients.
The elliptic, triangular, quadrangular and pentagonal anisotropic flow coefficients for pi(+/-), K-+/- and p+p in Pb-Pb collisions at root sNN = 2.76TeV were measured with the ALICE detector at the Large Hadron Collider. The results were obtained with the Scalar Product method, correlating the identified hadrons with reference particles from a different pseudorapidity region. Effects not related to the common event symmetry planes (non-flow) were estimated using correlations in pp collisions and were subtracted from the measurement. The obtained flow coefficients exhibit a clear mass ordering for transverse momentum (pT) values below approximate to 3 GeV/c. In the intermediate pT region (3 < pT < 6 GeV/c), particles group at an approximate level according to the number of constituent quarks, suggesting that coalescence might be the relevant particle production mechanism in this region. The results for pT < 3 GeV/c are described fairly well by a hydrodynamical model (iEBE-VISHNU) that uses initial conditions generated by A Multi-Phase Transport model (AMPT) and describes the expansion of the fireball using a value of 0.08 for the ratio of shear viscosity to entropy density (eta/s), coupled to a hadronic cascade model (UrQMD). Finally, expectations from AMPT alone fail to quantitatively describe the measurements for all harmonics throughout the measured transverse momentum region. However, the comparison to the AMPT model highlights the importance of the late hadronic rescattering stage to the development of the observed mass ordering at low values of pT and of coalescence as a particle production mechanism for the particle type grouping at intermediate values of pT for all harmonics.
The ALICE Collaboration has measured inclusive J/psi production in pp collisions at a center-of-mass energy root s = 2.76 TeV at the LHC. The results presented in this Letter refer to the rapidity ranges vertical bar y vertical bar < 0.9 and 2.5 < y <4 and have been obtained by measuring the electron and muon pair decay channels, respectively. The integrated luminosities for the two channels are L-int(e) = 1.1 nb(-1) and L-int(mu) = 19.9 nb(-1), and the corresponding signal statistics are N-J/psi(e+e-) = 59 +/- 14 and N-J/psi(mu+mu-) = 1364 +/- 53. We present d sigma(J/psi)/dy for the two rapidity regions under study and, for the forward-y range, d(2)sigma(J/psi)/dydp(t) in the transverse momentum domain 0 < p(t) < 8 GeV/c. The results are compared with previously published results at root s = 7 TeV and with theoretical calculations. (C) 2012 CERN. Published by Elsevier B.V. All rights reserved.
We report on the inclusive production cross sections of J/psi, psi(2S), gamma(1S), gamma(2S) and gamma(3S), measured at forward rapidity with the ALICE detector in pp collisions at a center-of-mass energy root s = 8 TeV. The analysis is based on data collected at the LHC and corresponds to an integrated luminosity of 1.23 pb(-1). Quarkonia are reconstructed in the dimuon-decay channel. The differential production cross sections are measured as a function of the transverse momentum p(T) and rapidity y, over the p(T) ranges 0 < p(T) < 20 GeV/c for J/psi, 0 < p(T) < 12 GeV/c for all other resonances, and for 2.5 < y < 4. The cross sections, integrated over p(T) and y, and assuming unpolarized quarkonia, are sigma(J/psi) = 8.98 +/- 0.04 +/- 0.82 mu b, sigma(psi(2S)) = 1.23 +/- 0.08 +/- 0.22 mu b, sigma(gamma(1S)) = 71 +/- 6 +/- 7 nb, sigma(gamma(2S)) = 26 +/- 5 +/- 4 nb and sigma(gamma(3S)) = 9 +/- 4 +/- 1 nb, where the first uncertainty is statistical and the second one is systematic. These values agree, within at most 1.4 sigma, with measurements performed by the LHCb collaboration in the same rapidity range.
The transverse momentum (p(T)) dependence of the nuclear modification factor R-AA and the centrality dependence of the average transverse momentum <p(T)> for inclusive J/psi have been measured with ALICE for Pb-Pb collisions at root S-NN = 2.76TeV in the e(+)e(-) decay channel at mid-rapidity (vertical bar y vertical bar < 0.8). The <p(T)> is significantly smaller than the one observed for pp collisions at the same centre-of-mass energy. Consistently, an increase of RAA is observed towards low p(T). These observations might be indicative of a sizable contribution of charm quark coalescence to the J/psi production. Additionally, the fraction of non-prompt J/psi from beauty hadron decays, f(B), has been determined in the region 1.5 < p(T) < 10 GeV/c in three centrality intervals. No significant centrality dependence of fB is observed. Finally, the RAA of non-prompt J/psi is discussed and compared with model predictions. The nuclear modification in the region 4.5 < p(T) < 10 GeV/c is found to be stronger than predicted by most models.
The multiplicity and pseudorapidity distributions of inclusive photons have been measured at forward rapidities (2.3 < eta < 3.9) in proton-proton collisions at three center-of-mass energies, root s = 0.9, 2.76 and 7 TeV using the ALICE detector. It is observed that the increase in the average photon multiplicity as a function of beam energy is compatible with both a logarithmic and a power-law dependence. The relative increase in average photon multiplicity produced in inelastic pp collisions at 2.76 and 7 TeV center-of-mass energies with respect to 0.9 TeV are 37.2 +/- 0.3% (stat) +/- 8.8% (sys) and 61.2 +/- 0.3% (stat) +/- 7.6% (sys), respectively. The photon multiplicity distributions for all center-of-mass energies are well described by negative binomial distributions. The multiplicity distributions are also presented in terms of KNO variables. The results are compared to model predictions, which are found in general to underestimate the data at large photon multiplicities, in particular at the highest center-of-mass energy. Limiting fragmentation behavior of photons has been explored with the data, but is not observed in the measured pseudorapidity range.
Two-particle angular correlations were measured in pp collisions at root s = 7 TeV for pions, kaons, protons, and lambdas, for all particle/anti-particle combinations in the pair. Data for mesons exhibit an expected peak dominated by effects associated with mini-jets and are well reproduced by general purpose Monte Carlo generators. However, for baryon-baryon and anti-baryon-anti-baryon pairs, where both particles have the same baryon number, a near-side anti-correlation structure is observed instead of a peak. This effect is interpreted in the context of baryon production mechanisms in the fragmentation process. It currently presents a challenge to Monte Carlo models and its origin remains an open question.
We report a precise measurement of the J/psi elliptic flow in Pb-Pb collisions at root s(NN) = 5.02 TeV with the ALICE detector at the LHC. The J/psi mesons are reconstructed at midrapidity (|y| < 0.9) in the dielectron decay channel and at forward rapidity (2.5 < y < 4.0) in the dimuon channel, both down to zero transverse momentum. At forward rapidity, the elliptic flow v(2) of the J/psi is studied as a function of the transverse momentum and centrality. A positive v(2) is observed in the transverse momentum range 2<p(T)<8GeV/c in the three centrality classes studied and confirms with higher statistics our earlier results at root s(NN) = 2.76 TeV in semicentral collisions. At midrapidity, the J/psi v(2) is investigated as a function of the transverse momentum in semicentral collisions and found to be in agreement with the measurements at forward rapidity. These results are compared to transport model calculations. The comparison supports the idea that at low p(T) the elliptic flow of the J/psi originates from the thermalization of charm quarks in the deconfined medium but suggests that additional mechanisms might be missing in the models.
The ALICE Collaboration reports the measurement of the relative J/psi yield as a function of charged particle pseudorapidity density dN(ch)/d eta in pp collisions at root s = 7 TeV at the LHC. J/psi particles are detected for p(t) > 0, in the rapidity interval vertical bar y vertical bar < 0.9 via decay into e(+)e(-), and in the interval 2.5 < y < 4.0 via decay into mu(+)/mu(-) pairs. An approximately linear increase of the J/psi yields normalized to their event average (dN(J/psi)/dy)/(dN(J/psi)/dy) with (dN(ch)/c eta)/(dN(ch)/d eta) is observed in both rapidity ranges, where dN(ch)/d eta is measured within vertical bar eta vertical bar < 1 and p(t) > 0. In the highest multiplicity interval with (dN(ch)/d eta)(bin)) = 24.1, corresponding to four times the minimum bias multiplicity density, an enhancement relative to the minimum bias J/psi yield by a factor of about 5 at 2.5 < y <4 (8 at vertical bar y vertical bar < 0.9) is observed. (C) 2012 CERN. Published by Elsevier B.V. All rights reserved.
The inclusive J/Psi production has been studied in Pb-Pb and pp collisions at the centre-of-mass energy per nucleon pair root sNN= 5.02TeV, using the ALICE detector at the CERN LHC. The J/Psi meson is reconstructed, in the centre-of-mass rapidity interval 2.5 < y < 4and in the transverse- momentum range p(T)< 12GeV/c, via its decay to a muon pair. In this Letter, we present results on the inclusive J/Psi cross section in pp collisions at root s= 5.02TeV and on the nuclear modification factor R-AA. The latter is presented as a function of the centrality of the collision and, for central collisions, as a function of the transverse momentum p(T) of the J/Psi. The measured R-AA values indicate a suppression of the J/Psi in nuclear collisions and are then compared to our previous results obtained in Pb-Pb collisions at root sNN= 2.76TeV. The ratio of the R-AA values at the two energies is also computed and compared to calculations of statistical and dynamical models. The numerical value of the ratio for central events (0-10% centrality) is 1.17 +/- 0.04( stat)+/- 0.20(syst). In central events, as a function of p(T), a slight increase of R-AA with collision energy is visible in the region 2 < p(T)< 6GeV/c. Theoretical calculations qualitatively describe the measurements, within uncertainties. (C) 2017 The Author. Published by Elsevier B.V.
The yields of the K*(892)(0) and phi(1020) resonances are measured in Pb-Pb collisions at root s(NN) = 2.76 TeV through their hadronic decays using the ALICE detector. The measurements are performed in multiple centrality intervals at mid-rapidity (vertical bar y vertical bar < 0.5) in the transverse-momentum ranges 0.3 < p(T) < 5 GeV/c for the K*(892)(0) and 0.5 < p(T) < 5 GeV/c for the phi(1020). The yields of K*(892)(0) are suppressed in central Pb-Pb collisions with respect to pp and peripheral Pb-Pb collisions (perhaps due to rescattering of its decay products in the hadronic medium), while the longer-lived phi(1020) meson is not suppressed. These particles are also used as probes to study the mechanisms of particle production. The shape of the pT distribution of the phi(1020) meson, but not its yield, is reproduced fairly well by hydrodynamic models for central Pb-Pb collisions. In central Pb-Pb collisions at low and intermediate p(T), the p/phi(1020) ratio is flat in p(T), while the p/pi and phi(1020)/pi ratios show a pronounced increase and have similar shapes to each other. These results indicate that the shapes of the p(T) distributions of these particles in central Pb-Pb collisions are determined predominantly by the particle masses and radial flow. Finally, phi(1020) production in Pb-Pb collisions is enhanced, with respect to the yield in pp collisions and the yield of charged pions, by an amount similar to the Lambda and Xi.
The production of K*(892)(0) and phi(1020) mesons in proton-proton (pp) and lead-lead (Pb-Pb) collisions at root sNN = 2.76 TeV has been analyzed using a high luminosity data sample accumulated in 2011 with the ALICE detector at the Large Hadron Collider (LHC). Transverse momentum (p(T)) spectra have been measured for K*(892)(0) and phi(1020) mesons via their hadronic decay channels for p(T) up to 20 GeV/c. The measurements in pp collisions have been compared to model calculations and used to determine the nuclear modification factor and particle ratios. The K*(892)(0)/K ratio exhibits significant reduction from pp to central Pb-Pb collisions, consistent with the suppression of the K*( 892)(0) yield at low pT due to rescattering of its decay products in the hadronic phase. In central Pb-Pb collisions the pT dependent phi(1020)/p and K*(892)0/p ratios show an enhancement over pp collisions for pT approximate to 3 GeV/c, consistent with previous observations of strong radial flow. At high pT, particle ratios in Pb-Pb collisions are similar to those measured in pp collisions. In central Pb-Pb collisions, the production of K*(892)(0) and phi(1020) mesons is suppressed for p(T) > 8 GeV/c. This suppression is similar to that of charged pions, kaons, and protons, indicating that the suppression does not depend on particle mass or flavor in the light quark sector.
We present the results of three-dimensional femtoscopic analyses for charged and neutral kaons recorded by ALICE in Pb-Pb collisions at root s(NN) = 2.76 TeV. Femtoscopy is used to measure the space-time characteristics of particle production from the effects of quantum statistics and final-state interactions in two-particle correlations. Kaon femtoscopy is an important supplement to that of pions because it allows one to distinguish between different model scenarios working equally well for pions. In particular, we compare the measured three-dimensional kaon radii with a purely hydrodynamical calculation and a model where the hydrodynamic phase is followed by a hadronic rescattering stage. The former predicts an approximate transverse mass (m(T)) scaling of source radii obtained from pion and kaon correlations. This m(T) scaling appears to be broken in our data, which indicates the importance of the hadronic rescattering phase at LHC energies. A k(T) scaling of pion and kaon source radii is observed instead. The time of maximal emission of the system is estimated by using the three-dimensional femtoscopic analysis for kaons. The measured emission time is larger than that of pions. Our observation is well supported by the hydrokinetic model predictions.
The second and the third order anisotropic flow, V-2 and V-3, are mostly determined by the corresponding initial spatial anisotropy coefficients, epsilon(2) and epsilon(3), in the initial density distribution. In addition to their dependence on the same order initial anisotropy coefficient, higher order anisotropic flow, Vn(n > 3), can also have a significant contribution from lower order initial anisotropy coefficients, which leads to mode-coupling effects. In this Letter we investigate the linear and non-linear modes in higher order anisotropic flow V-n for n = 4, 5, 6 with the ALICE detector at the Large Hadron Collider. The measurements are done for particles in the pseudorapidity range |eta| < 0.8 and the transverse momentum range 0.2 < p(T)< 5.0 GeV/c as a function of collision centrality. The results are compared with theoretical calculations and provide important constraints on the initial conditions, including initial spatial geometry and its fluctuations, as well as the ratio of the shear viscosity to entropy density of the produced system. (C) 2017 The Author(s). Published by Elsevier B.V.
Angular correlations between charged trigger and associated particles are measured by the ALICE detector in p-Pb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV for transverse momentum ranges within 0.5 < P-T,P-assoc < P-T,P-trig < 4 GeV/c. The correlations are measured over two units of pseudorapidity and full azimuthal angle in different intervals of event multiplicity, and expressed as associated yield per trigger particle. Two long-range ridge-like structures, one on the near side and one on the away side, are observed when the per-trigger yield obtained in low-multiplicity events is subtracted from the one in high-multiplicity events. The excess on the near-side is qualitatively similar to that recently reported by the CMS Collaboration, while the excess on the away-side is reported for the first time. The two-ridge structure projected onto azimuthal angle is quantified with the second and third Fourier coefficients as well as by near-side and away-side yields and widths. The yields on the near side and on the away side are equal within the uncertainties for all studied event multiplicity and p(T) bins, and the widths show no significant evolution with event multiplicity or p(T). These findings suggest that the near-side ridge is accompanied by an essentially identical away-side ridge. (c) 2013 CERN. Published by Elsevier B.V. All rights reserved.
The azimuthal correlations of D mesons with charged particles were measured with the ALICE apparatus in pp collisions at root s = 7 TeV and p-Pb collisions at root sNN = 5.02 TeV at the Large Hadron Collider. D-0, D+, and D*+ mesons and their charge conjugates with transverse momentum 3 < pT < 16 GeV/c and rapidity in the nucleonnucleon centre-of-mass system vertical bar y(cms)vertical bar < 0.5 (pp collisions) and -0.96 < y(cms) < 0.04 (p-Pb collisions) were correlated to charged particles with p(T) > 0.3 GeV/c. The yield of charged particles in the correlation peak induced by the jet containing the D meson and the peak width are compatible within uncertainties in the two collision systems. The data are described within uncertainties by Monte-Carlo simulations based on PYTHIA, POWHEG, and EPOS 3 event generators.
We report on the first measurement of an excess in the yield of J/psi at very low transverse momentum (pT < 0.3 GeV/c) in peripheral hadronic Pb-Pb collisions at root s(NN) = 2.76 TeV, performed by ALICE at the CERN LHC. Remarkably, the measured nuclear modification factor of J/psi in the rapidity range 2.5 < y < 4 reaches about 7 (2) in the p(T) range 0-0.3 GeV/c in the 70%-90% (50%-70%) centrality class. The J/psi production cross section associated with the observed excess is obtained under the hypothesis that coherent photoproduction of J/psi is the underlying physics mechanism. If confirmed, the observation of J/psi coherent photoproduction in Pb-Pb collisions at impact parameters smaller than twice the nuclear radius opens new theoretical and experimental challenges and opportunities. In particular, coherent photoproduction accompanying hadronic collisions may provide insight into the dynamics of photoproduction and nuclear reactions, as well as become a novel probe of the quark-gluon plasma.
Charged jet production cross sections in p-Pb collisions at root s(NN) = 5.02 TeV measured with the ALICE detector at the LHC are presented. Using the anti-k(T) algorithm, jets have been reconstructed in the central rapidity region from charged particles with resolution parameters R = 0.2 and R = 0.4. The reconstructed jets have been corrected for detector effects and the underlying event background. To calculate the nuclear modification factor, R-pPb, of charged jets in p-Pb collisions, a pp reference was constructed by scaling previously measured charged jet spectra at root s = 7 TeV. In the transverse momentum range 20 <= p(T, chjet) <= 120 GeV/c, R-pPb is found to be consistent with unity, indicating the absence of strong nuclear matter effects on jet production. Major modifications to the radial jet structure are probed via the ratio of jet production cross sections reconstructed with the two different resolution parameters. This ratio is found to be similar to the measurement in pp collisions at root s = 7 TeV and to the expectations from PYTHIA pp simulations and NLO pQCD calculations at root s(NN) = 5.02 TeV. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V.
The transverse momentum (p(T)) spectra and elliptic flow coefficient (v(2)) of deuterons and anti-deuterons at mid-rapidity (|y| < 0.5) are measured with the ALICE detector at the LHC in Pb-Pb collisions at root s(NN) = 2.76 TeV. The measurement of the p(T) spectra of (anti-)deuterons is done up to 8 GeV/c in 0-10% centrality class and up to 6 GeV/c in 10-20% and 20-40% centrality classes. The v(2) is measured in the 0.8 < p(T) < 5 GeV/c interval and in six different centrality intervals (0-5, 5-10, 10-20, 20-30, 30-40 and 40-50%) using the scalar product technique. Measured pi(+/-), K-+/- and p+(p) over bar transverse-momentum spectra and v(2) are used to predict the deuteron p(T) spectra and v(2) within the Blast-Wave model. The predictions are able to reproduce the v(2) coefficient in the measured p(T) range and the transverse-momentum spectra for p(T) > 1.8 GeV/c within the experimental uncertainties. The measurement of the coalescence parameter B-2 is performed, showing a p(T) dependence in contrast with the simplest coalescence model, which fails to reproduce also the measured v(2) coefficient. In addition, the coalescence parameter B-2 and the elliptic flow coefficient in the 20-40% centrality interval are compared with the AMPT model which is able, in its version without string melting, to reproduce the measured v(2)(p(T)) and the B-2(p(T)) trend.
The production cross sections for prompt charmed mesons D-0, D+, D*(+) and D-s(+) were measured at mid-rapidity in proton-proton collisions at a centre-of-mass energy root s = 7 TeV with the ALICE detector at the Large Hadron Collider (LHC). D mesons were reconstructed from their decays D-0 -> K-pi(+), D+ -> K- pi(+)pi(+), D*(+) -> D-0 pi(+), D-s(+) -> phi pi(+) -> K-K+pi(+), and their charge conjugates. With respect to previous measurements in the same rapidity region, the coverage in transverse momentum (p(T)) is extended and the uncertainties are reduced by a factor of about two. The accuracy on the estimated total c (c) over bar production cross section is likewise improved. The measured p(T)-differential cross sections are compared with the results of three perturbative QCD calculations.
The measurement of prompt D-meson production as a function of multiplicity in p-Pb collisions at TeV with the ALICE detector at root s(NN) the LHC is reported. D-0, D+ and Dau+ mesons are reconstructed via their hadronic decay channels in the centre-of-mass rapidity range -0.96 < y(cms) < 0.04 and transverse momentum interval 1 < p(T) < 24 GeV/c. The multiplicity dependence of D-meson production is examined by either comparing yields in p-Pb collisions in different event classes, selected based on the multiplicity of produced particles or zero-degree energy, with those in pp collisions, scaled by the number of binary nucleon-nucleon collisions (nuclear modification factor); as well as by evaluating the per-event yields in p-Pb collisions in different multiplicity intervals normalised to the multiplicity-integrated ones (relative yields). The nuclear modification factors for D-0, D+ and D*(+) are consistent with one another. The D-meson nuclear modification factors as a function of the zero-degree energy are consistent with unity within uncertainties in the measured p(T) regions and event classes. The relative D-meson yields, calculated in various p(T) intervals, increase as a function of the charged-particle multiplicity. The results are compared with the equivalent pp measurements at root s = 7 TeV as well as with EPOS 3 calculations.
A measurement of dijet correlations in p-Pb collisions at root s(NN) = 5.02 TeV with the ALICE detector is presented. Jets are reconstructed from charged particles measured in the central tracking detectors and neutral energy deposited in the electromagnetic calorimeter. The transverse momentum of the full jet (clustered from charged and neutral constituents) and charged jet (clustered from charged particles only) is corrected event-by-event for the contribution of the underlying event, while corrections for underlying event fluctuations and finite detector resolution are applied on an inclusive basis. A projection of the dijet transverse momentum, k(Ty) = p(T,jet)(ch+ne) sin(Delta phi(dijet)) with Delta phi(dijet) the azimuthal angle between a full and charged jet and p(T,jet)(ch+ne) the transverse momentum of the full jet, is used to study nuclear matter effects in p-Pb collisions. This observable is sensitive to the acoplanarity of dijet production and its potential modificationin p-Pb collisions with respect to pp collisions. Measurements of the dijet k(Ty) as a function of the transverse momentum of the full and recoil charged jet, and the event multiplicity are presented. No significant modification of k(Ty) due to nuclear matter effects in p-Pb collisions with respect to the event multiplicity or a PYTHIA8 reference is observed. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V.
Prompt D meson and non-prompt J/psi yields are studied as a function of the multiplicity of charged particles produced in inelastic proton-proton collisions at a centre-of-mass energy of root s = 7 TeV. The results are reported as a ratio between yields in a given multiplicity interval normalised to the multiplicity-integrated ones (relative yields). They are shown as a function of the multiplicity of charged particles normalised to the average value for inelastic collisions (relative charged-particle multiplicity). D-0, D+ and D*+ mesons are measured in five p(T) intervals from 1 GeV/c to 20 GeV/c and for |y| < 0.5 via their hadronic decays. The D-meson relative yield is found to increase with increasing charged-particle multiplicity. For events with multiplicity six times higher than the average multiplicity of inelastic collisions, a yield enhancement of a factor about 15 relative to the multiplicity-integrated yield in inelastic collisions is observed. The yield enhancement is independent of transverse momentum within the uncertainties of the measurement. The D-0-meson relative yield is also measured as a function of the relative multiplicity at forward pseudo-rapidity. The non-prompt J/psi, i.e. the B hadron, contribution to the inclusive J/psi production is measured in the di-electron decay channel at central rapidity. It is evaluated for p(T) > 1.3 GeV/c and |y| < 0.9, and extrapolated to p(T) > 0. The fraction of non-prompt J/psi the inclusive J/psi yields shows no dependence on the charged-particle multiplicity at central rapidity. Charm and beauty hadron relative yields exhibit a similar increase with increasing charged-particle multiplicity. The measurements are compared to PYTHIA 8, EPOS 3 and percolation calculations.
The p(T)-differential production cross section of electrons from semileptonic decays of heavy-flavor hadrons has been measured at midrapidity in proton-proton collisions at root s = 2.76 TeV in the transverse momentum range 0.5 < p(T) < 12 GeV/c with the ALICE detector at the LHC. The analysis was performed using minimum bias events and events triggered by the electromagnetic calorimeter. Predictions from perturbative QCD calculations agree with the data within the theoretical and experimental uncertainties.
The production of beauty hadrons was measured via semi-leptonic decays at mid-rapidity with the ALICE detector at the LHC in the transverse momentum interval 1 < PT < 8 GeV/c in minimum-bias p-Pb collisions at root(NN)-N-S = 5.02 TeV and in 1.3 < PT < 8 GeV/c in the 20% most central Pb-Pb collisions at root(NN)-N-S = 2.76 TeV. The pp reference spectra at root s = 5.02 TeV and root s = 2.76 TeV, needed for the calculation of the nuclear modification factors RpPb and R-PbPb, were obtained by a pQCD-driven scaling of the cross section of electrons from beauty-hadron decays measured at root s = 7 TeV. In the PT interval 3 < PT < 8 GeV/c, a suppression of the yield of electrons from beauty-hadron decays is observed in Pb-Pb compared to pp collisions. Towards lower PT, the R-PbPb values increase with large systematic uncertainties. The R-ppb is consistent with unity within systematic uncertainties and is well described by theoretical calculations that include cold nuclear matter effects in p-Pb collisions. The measured R-pPb and these calculations indicate that cold nuclear matter effects are small at high transverse momentum also in Pb-Pb collisions. Therefore, the observed reduction of R-PbPb below unity at high PT may be ascribed to an effect of the hot and dense medium formed in Pb-Pb collisions.
The effect of event background fluctuations on charged particle jet reconstruc- tion in Pb-Pb collisions at √sNN = 2.76 TeV has been measured with the ALICE experi- ment. The main sources of non-statistical fluctuations are characterized based purely on experimental data with an unbiased method, as well as by using single high pt particles and simulated jets embedded into real Pb-Pb events and reconstructed with the anti-kt jet finder. The influence of a low transverse momentum cut-off on particles used in the jet reconstruction is quantified by varying the minimum track pt between 0.15 GeV/c and 2 GeV/c. For embedded jets reconstructed from charged particles with pt > 0.15 GeV/c, the uncertainty in the reconstructed jet transverse momentum due to the heavy-ion back- ground is measured to be 11.3GeV/c (standard deviation) for the 10% most central Pb- Pb collisions, slightly larger than the value of 11.0GeV/c measured using the unbiased method. For a higher particle transverse momentum threshold of 2 GeV/c, which will gen- erate a stronger bias towards hard fragmentation in the jet finding process, the standard deviation of the fluctuations in the reconstructed jet transverse momentum is reduced to 4.8-5.0GeV/c for the 10% most central events. A non-Gaussian tail of the momentum uncertainty is observed and its impact on the reconstructed jet spectrum is evaluated for varying particle momentum thresholds, by folding the measured fluctuations with steeply falling spectra.
The transverse momentum(p(T)) spectrum and nuclear modification factor (R-AA) of reconstructed jets in 0-10% and 10-30% central Pb-Pb collisions at root s(NN) = 2.76 TeV were measured. Jets were reconstructed using the anti-k(T) jet algorithm with a resolution parameter of R = 0.2 from charged and neutral particles, utilizing the ALICE tracking detectors and Electromagnetic Calorimeter (EMCal). The jet p(T) spectra are reported in the pseudorapidity interval of extbackslasheta(jet) extbackslash < 0.5 for 40 < p(T), jet < 120 GeV/c in 0-10% and for 30 < p(T), jet < 100 GeV/c in 10-30% collisions. Reconstructed jets were required to contain a leading charged particle with p(T) > 5 GeV/c to suppress jets constructed from the combinatorial background in Pb-Pb collisions. The leading charged particle requirement applied to jet spectra both in pp and Pb-Pb collisions had a negligible effect on the R-AA. The nuclear modification factor R-AA was found to be 0.28 +/- 0.04 in 0-10% and 0.35 +/- 0.04 in 10-30% collisions, independent of p(T), jet within the uncertainties of the measurement. The observed suppression is in fair agreement with expectations from two model calculations with different approaches to jet quenching. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V.
We report the measurement of a new observable of jet quenching in central Pb-Pb collisions at root s(NN) = 2.76 TeV, based on the semi-inclusive rate of charged jets recoiling from a high transverse momentum (high-p T) charged hadron trigger. Jets are measured using collinear-safe jet reconstruction with infrared cutoff for jet constituents of 0.15 GeV, for jet resolution parameters R = 0.2, 0.4 and 0.5. Underlying event background is corrected at the event-ensemble level, without imposing bias on the jet population. Recoil jet spectra are reported in the range 20 < p(T,jet)(ch) < 100 GeV. Reference distributions for pp collisions at root s = 2.76TeV are calculated using Monte Carlo and NLO pQCD methods, which are validated by comparing with measurements in pp collisions at root s = 7TeV. The recoil jet yield in central Pb-Pb collisions is found to be suppressed relative to that in pp collisions. No significant medium-induced broadening of the intra-jet energy profile is observed within 0.5 radians relative to the recoil jet axis. The angular distribution of the recoil jet yield relative to the trigger axis is found to be similar in central Pb-Pb and pp collisions, with no significant medium-induced acoplanarity observed. Large-angle jet deflection, which may provide a direct probe of the nature of the quasi-particles in hot QCD matter, is explored.
The measurement of primary pi(+/-), K-+/-, p and (p) over bar production at mid-rapidity (|y| < 0.5) in proton-proton collisions at root s = 7 TeV performed with a large ion collider experiment at the large hadron collider (LHC) is reported. Particle identification is performed using the specific ionisation energy-loss and time-of-flight information, the ring-imaging Cherenkov technique and the kink-topology identification of weak decays of charged kaons. Transverse momentum spectra are measured from 0.1 up to 3 GeV/c for pions, from 0.2 up to 6 GeV/c for kaons and from 0.3 up to 6 GeV/c for protons. The measured spectra and particle ratios are compared with quantum chromodynamics-inspired models, tuned to reproduce also the earlier measurements performed at the LHC. Furthermore, the integrated particle yields and ratios as well as the average transverse momenta are compared with results at lower collision energies.
The p(T)-differential production cross sections of the prompt charmed mesons D-0, D+, D*(-), and D-s(+) and their charge conjugate in the rapidity interval -0.96 < y(cms) < 0.04 were measured in p-Pb collisions at a center-of-mass energy root s(NN) = 5.02 TeV with the ALICE detector at the LHC. The nuclear modification factor R-pPb, quantifying the D-meson yield in p-Pb collisions relative to the yield in pp collisions scaled by the number of binary nucleon-nucleon collisions, is compatible within the 15%-20% uncertainties with unity in the transverse momentum interval 1 < p(T) < 24 GeV/c. No significant difference among the R-pPb of the four D-meson species is observed. The results are described within uncertainties by theoretical calculations that include initial-state effects. The measurement adds experimental evidence that the modification of the momentum spectrum of D mesons observed in Pb-Pb collisions with respect to pp collisions is due to strong final-state effects induced by hot partonic matter.
Electrons from heavy-flavour hadron decays (charm and beauty) were measured with the ALICE detector in Pb-Pb collisions at a centre-of-mass of energy root s(NN) = 2.76 TeV. The transverse momentum (pT) differential production yields at mid-rapidity were used to calculate the nuclear modification factor R-AA in the interval 3 < p(T) < 18 GeV/c. The R-AA shows a strong suppression compared to binary scaling of pp collisions at the same energy (up to a factor of 4) in the 10% most central Pb-Pb collisions. There is a centrality trend of suppression, and a weaker suppression (down to a factor of 2) in semi-peripheral (50-80%) collisions is observed. The suppression of electrons in this broad p(T) interval indicates that both charm and beauty quarks lose energy when they traverse the hot medium formed in Pb-Pb collisions at LHC. (C) 2017 The Author. Published by Elsevier B.V.
The inclusive production cross sections at forward rapidity of , , (1S) and (2S) are measured in collisions at with the ALICE detector at the LHC. The analysis is based on a data sample corresponding to an integrated luminosity of 1.35 pb. Quarkonia are reconstructed in the dimuon-decay channel and the signal yields are evaluated by fitting the invariant mass distributions. The differential production cross sections are measured as a function of the transverse momentum and rapidity , over the ranges GeV/c for , GeV/c for all other resonances and for . The measured cross sections integrated over and , and assuming unpolarized quarkonia, are: b, b, nb and nb, where the first uncertainty is statistical and the second one is systematic. The results are compared to measurements performed by other LHC experiments and to theoretical models.
We report the transverse energy (ET) measured with ALICE at midrapidity in Pb-Pb collisions at root s(NN) = 2.76 TeV as a function of centrality. The transverse energy was measured using identified single-particle tracks. The measurement was cross checked using the electromagnetic calorimeters and the transverse momentum distributions of identified particles previously reported by ALICE. The results are compared to theoretical models as well as to results from other experiments. The mean ET per unit pseudorapidity (eta), < dE(T)/d eta >, in 0%-5% central collisions is 1737 +/- 6(stat.) +/- 97(sys.) GeV. We find a similar centrality dependence of the shape of < dE(T)/d eta > as a function of the number of participating nucleons to that seen at lower energies. The growth in < dE(T)/d eta > at the LHC energies exceeds extrapolations of low-energy data. We observe a nearly linear scaling of < dE(T)/d eta > with the number of quark participants. With the canonical assumption of a 1 fm/c formation time, we estimate that the energy density in 0%-5% central Pb-Pb collisions at root s(NN) = 2.76 TeV is 12.3 +/- 1.0 GeV/fm(3) and that the energy density at the most central 80 fm(2) of the collision is at least 21.5 +/- 1.7 GeV/fm(3). This is roughly 2.3 times that observed in 0%-5% central Au-Au collisions at root s(NN) = 200 GeV.
In 2013, the Large Hadron Collider provided proton-lead and lead-proton collisions at the center-of-mass energy per nucleon pair root s(NN) = 5.02 TeV. Van der Meer scans were performed for both configurations of colliding beams, and the cross section was measured for two reference processes, based on particle detection by the T0 and V0 detectors, with pseudo-rapidity coverage 4.6 < eta < 4.9, -3.3 < eta < -3.0 and 2.8 < eta < 5.1, -3.7 < eta < -1.7, respectively. Given the asymmetric detector acceptance, the cross section was measured separately for the two configurations. The measured visible cross sections are used to calculate the integrated luminosity of the proton-lead and lead-proton data samples, and to indirectly measure the cross section for a third, configuration-independent, reference process, based on neutron detection by the Zero Degree Calorimeters.
We present the first ever measurements of femtoscopic correlations between the K-S(0) and K-+/- particles. The analysis was performed on the data from Pb-Pb collisions at root S-NN = 2.76 TeV measured by the ALICE experiment. The observed femtoscopic correlations are consistent with final-state interactions proceeding via the a(0)(980) resonance. The extracted kaon source radius and correlation strength parameters for (KSK-)-K-0 are found to be equal within the experimental uncertainties to those for (KSK+)-K-0. Comparing the results of the present study with those from published identical-kaon femtoscopic studies by ALICE, mass and coupling parameters for the a(0) resonance are tested. Our results are also compatible with the interpretation of the a(0) having a tetraquark structure instead of that of a diquark. (c) 2017 The Author. Published by Elsevier B.V.
The ratios of yields of anti-baryons to baryons probes the mechanisms of baryon-number transport. Results for (p) over bar /p, (Lambda) over bar/Lambda, (Xi) over bar (+)/(Xi) over bar (-) and (Omega) over bar (+)/(Omega) over bar (-) in pp collisions at root s = 0.9, 2.76 and 7 TeV, measured with the ALICE detector at the LHC, are reported. Within the experimental uncertainties and ranges covered by our measurement, these ratios are independent of rapidity, transverse momentum and multiplicity for all measured energies. The results are compared to expectations from event generators, such as PYTHIA and HIJING/B, that are used to model the particle production in pp collisions. The energy dependence of (p) over bar /p, (Lambda) over bar/(Lambda) over bar, (Xi) over bar (+)/(Xi) over bar (-) and (Omega) over bar (+)/(Omega) over bar (-), reaching values compatible with unity for root s = 7 TeV, complement the earlier (p) over bar /p measurement of ALICE. These dependencies can be described by exchanges with the Regge-trajectory intercept of alpha(J) approximate to 0.5, which are suppressed with increasing rapidity interval Delta y. Any significant contribution of an exchange not suppressed at large Delta y (reached at LHC energies) is disfavoured.
A measurement of the multi-strange Xi(-) and Omega(-) baryons and their antiparticles by the ALICE experiment at the CERN Large Hadron Collider (LHC) is presented for inelastic proton-proton collisions at a centre-of-mass energy of 7 TeV. The transverse momentum (p(T)) distributions were studied at mid-rapidity (vertical bar y vertical bar < 0.5) in the range of 0.6 < p(T) < 8.5 GeV/c Xi(-) for and Xi(+) baryons, and in the range of 0.8 < P-T < 5 GeV/c for Omega(-) and<(Omega)over bar>(+). Baryons and antibaryons were measured as separate particles and we find that the baryon to antibaryon ratio of both particle species is consistent with unity over the entire range of the measurement. The statistical precision of the current data has allowed us to measure a difference between the mean p(T) of Xi(-) ((Xi) over bar)(+) and Omega(-) ((Omega) over bar (+)). Particle yields, mean pi, and the spectra in the intermediate pi range are not well described by the PYTHIA Perugia 2011 tune Monte Carlo event generator, which has been tuned to reproduce the early LHC data. The discrepancy is largest for Omega(-)((Omega) over bar (+)). This PYTHIA tune approaches the pi spectra of Xi(-) and Xi(+) baryons below p(T) <0.85 GeV/c and describes the Xi(-) and Xi(+) spectra above p(T) > 6.0 GeV/c. We also illustrate the difference between the experimental data and model by comparing the corresponding ratios of (Omega(-) +(Omega) over bar (+))/(Xi(-) + Xi(+)) as a function of transverse mass. (C) 2012 CERN. Published by Elsevier B.V. All rights reserved.
Three- and four-pionBose-Einstein correlations are presented in pp, p-Pb, and Pb-Pb collisions at the LHC. We compare our measured four-pion correlations to the expectation derived from two-and three-pion measurements. Such a comparison provides a method to search for coherent pion emission. We also present mixed-charge correlations in order to demonstrate the effectiveness of several analysis procedures such as Coulomb corrections. Same-charge four-pion correlations in pp and p-Pb appear consistent with the expectations from three-pion measurements. However, the presence of non-negligible background correlations in both systems prevent a conclusive statement. In Pb-Pb collisions, we observe a significant suppression of three-and four-pion Bose-Einstein correlations compared to expectations from two-pionmeasurements. There appears to be no centrality dependence of the suppression within the 0%-50% centrality interval. The origin of the suppression is not clear. However, by postulating either coherent pion emission or large multibody Coulomb effects, the suppression may be explained.
We report on two-particle charge-dependent correlations in pp, p-Pb, and Pb-Pb collisions as a function of the pseudorapidity and azimuthal angle difference, Delta eta and Delta phi respectively. These correlations are studied using the balance function that probes the charge creation time and the development of collectivity in the produced system. The dependence of the balance function on the event multiplicity as well as on the trigger and associated particle transversemomentum (p(T)) in pp, p-Pb, and Pb-Pb collisions at root s(NN) = 7, 5.02, and 2.76 TeV, respectively, are presented. In the low transverse momentum region, for 0.2 < p(T) < 2.0 GeV/c, the balance function becomes narrower in both Delta eta and Delta phi directions in all three systems for events with higher multiplicity. The experimental findings favor models that either incorporate some collective behavior (e.g. AMPT) or different mechanisms that lead to effects that resemble collective behavior (e.g. PYTHIA8 with color reconnection). For higher values of transverse momenta the balance function becomes even narrower but exhibits no multiplicity dependence, indicating that the observed narrowing with increasing multiplicity at low pT is a feature of bulk particle production.
Two-particle angular correlations between unidentified charged trigger and associated particles are measured by the ALICE detector in p-Pb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum range 0.7 < p(T),(assoc) < p(T),(trig) < 5.0 GeV/c is examined, to include correlations induced by jets originating from low momentum-transfer scatterings (minijets). The correlations expressed as associated yield per trigger particle are obtained in the pseudorapidity range vertical bar eta vertical bar < 0.9. The near-side long-range pseudorapidity correlations observed in high-multiplicity p-Pb collisions are subtracted from both near-side short-range and away-side correlations in order to remove the non-jet-like components. The yields in the jet-like peaks are found to be invariant with event multiplicity with the exception of events with low multiplicity. This invariance is consistent with the particles being produced via the incoherent fragmentation of multiple parton-parton scatterings, while the yield related to the previously observed ridge structures is not jet-related. The number of uncorrelated sources of particle production is found to increase linearly with multiplicity, suggesting no saturation of the number of multi-parton interactions even in the highest multiplicity p-Pb collisions. Further, the number scales only in the intermediate multiplicity region with the number of binary nucleon-nucleon collisions estimated with a Glauber Monte-Carlo simulation. (C) 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
Invariant yields of neutral pions at midrapidity in the transverse momentum range 0.6 < pT < 12 GeV/c measured in Pb-Pb collisions at root(NN)-N-s = 2.76 TeV are presented for six centrality classes. The pp reference spectrum was measured in the range 0.4 < pT < 10 GeV/c at the same center-of-mass energy. The nuclear modification factor, R-AA, shows a suppression of neutral pions in central Pb-Pb collisions by a factor of up to about 8-10 for 5 less than or similar to p(T) less than or similar to 7 GeV/c. The presented measurements are compared with results at lower center-of-mass energies and with theoretical calculations.
The Silicon Pixel Detector (SPD) constitutes the two innermost layers of the Inner Tracking System of the ALICE experiment and it is the closest detector to the interaction point. As a vertex detector, it has the unique feature of generating a trigger signal that contributes to the L0 trigger of the ALICE experiment. The SPD started collecting data since the very first pp collisions at LHC in 2009 and since then it has taken part in all pp, Pb-Pb and p-Pb data taking campaigns. This contribution will present the main features of the SPD, the detector performance and the operational experience, including calibration and optimization activities from Run 1 to Run 2.
The size of the particle emission region in high-energy collisions can be deduced using the femtoscopic correlations of particle pairs at low relative momentum. Such correlations arise due to quantum statistics and Coulomb and strong final state interactions. In this paper, results are presented from femtoscopic analyses of pi(+/-) pi(+/-), K-+/- K-+/-, K-S(0) K-S(0), pp, and (pp) over bar correlations from Pb-Pb collisions at root s(NN) = 2.76 TeV by the ALICE experiment at the LHC. One-dimensional radii of the system are extracted from correlation functions in terms of the invariant momentum difference of the pair. The comparison of the measured radii with the predictions from a hydrokinetic model is discussed. The pion and kaon source radii display a monotonic decrease with increasing average pair transverse mass m(T) which is consistent with hydrodynamic model predictions for central collisions. The kaon and proton source sizes can be reasonably described by approximate m(T) scaling.
We present a Bayesian approach to particle identification (PID) within the ALICE experiment. The aim is to more effectively combine the particle identification capabilities of its various detectors. After a brief explanation of the adopted methodology and formalism, the performance of the Bayesian PID approach for charged pions, kaons and protons in the central barrel of ALICE is studied. PID is performed via measurements of specific energy loss (dE/dx) and time of flight. PID efficiencies and misidentification probabilities are extracted and compared with Monte Carlo simulations using high-purity samples of identified particles in the decay channels K-S(0) -> pi(-)pi(+), phi -> K-K+, and A -> p pi(-) in p-Pb collisions at root sNN = 5.02 TeV. In order to thoroughly assess the validity of the Bayesian approach, this methodology was used to obtain corrected p(T) spectra of pions, kaons, protons, and D-0 mesons in pp collisions at root s = 7TeV. In all cases, the results using Bayesian PID were found to be consistent with previous measurements performed by ALICE using a standard PID approach. For the measurement of D-0 -> K-pi(+), it was found that a Bayesian PID approach gave a higher signal-to-background ratio and a similar or larger statistical significance when compared with standard PID selections, despite a reduced identification efficiency. Finally, we present an exploratory study of the measurement of A(c)(+) -> pK(-)pi(+) in pp collisions at root s = 7TeV, using the Bayesian approach for the identification of its decay products.
The first study of phi-meson production in p-Pb collisions at forward and backward rapidity, at a nucleonnucleon centre-of-mass energy root s(NN)= 5.02 TeV, has been performed with the ALICE apparatus at the LHC. The phi-mesons have been identified in the dimuon decay channel in the transverse momentum (p(T)) range 1 < p(T) < 7GeV/c, both in the p-going (2.03 < y < 3.53) and the Pb-going (-4.46 < y < -2.96) directions - where ystands for the rapidity in the nucleon-nucleon centre-of-mass - the integrated luminosity amounting to 5.01 +/- 0.19nb(-1) and 5.81 +/- 0.20nb(-1), respectively, for the two data samples. Differential cross sections as a function of transverse momentum and rapidity are presented. The forward-backward ratio for f-meson production is measured for 2.96 <|y| < 3.53, resulting in a ratio similar to 0.5 with no significant p(T) dependence within the uncertainties. The p(T) dependence of the phi nuclear modification factor R-pPb exhibits an enhancement up to a factor 1.6 at p(T) = 3-4GeV/c in the Pb-going direction. The p(T) dependence of the f-meson cross section in pp collisions at root s= 2.76 TeV, which is used to determine a reference for the p-Pb results, is also presented here for 1 < pT< 5GeV/c and 2.5 < y < 4, for a 78 +/- 3nb(-1) integrated luminosity sample. (C) 2017 The Author(s). Published by Elsevier B.V.
The measurement of the mass differences for systems bound by the strong force has reached a very high precision with protons and anti-protons(1,2). The extension of such measurement from (anti-)baryons to (anti-) nuclei allows one to probe any difference in the interactions between nucleons and anti-nucleons encoded in the (anti-) nuclei masses. This force is a remnant of the underlying strong interaction among quarks and gluons and can be described by effective theories(3), but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the difference between the ratios of the mass and charge of deuterons (d) and anti-deuterons ((d) over bar), and He-3 and (3)(He) over bar nuclei carried out with the ALICE (A Large Ion Collider Experiment)(4) detector in Pb-Pb collisions at a centre-of-mass energy per nucleon pair of 2.76 TeV. Our direct measurement of the mass-over-charge differences confirms CPT invariance to an unprecedented precision in the sector of light nuclei(5,6). This fundamental symmetry of nature, which exchanges particles with anti-particles, implies that all physics laws are the same under the simultaneous reversal of charge(s) (charge conjugation C), reflection of spatial coordinates (parity transformation P) and time inversion (T).
We report on the production of inclusive gamma(1S) and gamma(2S) in p-Pb collisions at root S-NN = 5.02 TeV at the LHC. The measurement is performed with the ALICE detector at backward (-4.46 < ycms < 2.96) and forward (2.03 < ycms <3.53) rapidity down to zero transverse momentum. The production cross sections of the gamma(1S) and gamma(2S) are presented, as well as the nuclear modification factor and the ratio of the forward to backward yields of gamma(1S). A suppression of the inclusive gamma(1S) yield in p-Pb collisions with respect to the yield from pp collisions scaled by the number of binary nucleon-nucleon collisions is observed at forward rapidity but not at backward rapidity. The results are compared to theoretical model calculations including nuclear shadowing or partonic energy loss effects. (C) 2014 The Authors. Published by Elsevier B.V.
Transverse momentum spectra of pi(+/-), K-+/- and p((p) over bar) up to p(T) = 20 GeV/c at mid-rapidity in pp, peripheral (60-80%) and central (0-5%) Pb-Pb collisions at v root s(NN) = 2.76 TeV have been measured using the ALICE detector at the Large Hadron Collider. The proton-to-pion and the kaon-to-pionratios both show a distinct peak at p(T) approximate to 3 GeV/c in central Pb-Pb collisions. Below the peak, p(T) < 3 GeV/c, both ratios are in good agreement with hydrodynamical calculations, suggesting that the peak itself is dominantly the result of radial flow rather than anomalous hadronization processes. For p(T) > 10 GeV/c particle ratios in pp and Pb-Pb collisions are in agreement and the nuclear modification factors for pi(+/-), K-+/- and p((p) over bar) indicate that, within the systematic and statistical uncertainties, the suppression is the same. This suggests that the chemical composition of leading particles from jets in the medium is similar to that of vacuum jets. (C) 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
The production of K(892)(0) and phi(1020) mesons has been measured in p-Pb collisions at root s(NN) = 5.02 TeV. K*0 and phi are reconstructed via their decay into charged hadrons with the ALICE detector in the rapidity range -0.5 < y < 0. The transverse momentum spectra, measured as a function of the multiplicity, have a p(T) range from 0 to 15 GeV/c for K*(0) and from 0.3 to 21 GeV/c for phi. Integrated yields, mean transverse momenta and particle ratios are reported and compared with results in pp collisions at root s = 7 TeV and Pb-Pb collisions at root s(NN) = 2.76 TeV. In Pb-Pb and p-Pb collisions, K*(0) and phi probe the hadronic phase of the system and contribute to the study of particle formation mechanisms by comparison with other identified hadrons. For this purpose, the mean transverse momenta and the differential proton-to-phi ratio are discussed as a function of the multiplicity of the event. The short-lived K*(0) is measured to investigate re-scattering effects, believed to be related to the size of the system and to the lifetime of the hadronic phase.
The production of (anti-) deuteron and (anti-) He-3 nuclei in Pb-Pb collisions at root sNN = 2.76 TeV has been studied using the ALICE detector at the LHC. The spectra exhibit a significant hardening with increasing centrality. Combined blast-wave fits of several particles support the interpretation that this behavior is caused by an increase of radial flow. The integrated particle yields are discussed in the context of coalescence and thermal-statistical model expectations. The particle ratios, He-3 / d and He-3 / p, in Pb-Pb collisions are found to be in agreement with a common chemical freeze-out temperature of T-chem approximate to 156 MeV. These ratios do not vary with centrality which is in agreement with the thermal-statistical model. In a coalescence approach, it excludes models in which nucleus production is proportional to the particle multiplicity and favors those in which it is proportional to the particle density instead. In addition, the observation of 31 anti-tritons in Pb-Pb collisions is reported. For comparison, the deuteron spectrum in pp collisions at root s = 7 TeV is also presented. While the p/p ratio is similar in pp and Pb-Pb collisions, the d/p ratio in pp collisions is found to be lower by a factor of 2.2 than in Pb-Pb collisions.
The production of muons from heavy-flavour hadron decays in p-Pb collisions at root s(NN) = 5.02 TeV was studied for 2 < p(T) < 16 GeV/c with the ALICE detector at the CERN LHC. The measurement was performed at forward (p-going direction) and backward (Pb-going direction) rapidity, in the ranges of rapidity in the centre-of-mass system (cms) 2.03 < y(cms) < 3.53 and -4.46 < y(cms) < -2.96, respectively. The production cross sections and nuclear modification factors are presented as a function of transverse momentum (P-T). At forward rapidity, the nuclear modification factor is compatible with unity while at backward rapidity, in the interval 2.5 < p(T) < 3.5 GeV/c, it is above unity by more than 2 sigma. The ratio of the forward -to -backward production cross sections is also measured in the overlapping interval 2.96 < |y(cms)| < 3.53 and is smaller than unity by 3.7 sigma in 2.5 < p(T) < 3.5 GeV/c. The data are described by model calculations including cold nuclear matter effects. (C) 2017 The Author(s). Published by Elsevier B.V.
Invariant differential yields of deuterons and antideuterons in pp collisions at root s = 0.9, 2.76 and 7 TeV and the yields of tritons, He-3 nuclei, and their antinuclei at root s = 7 TeV have been measured with the ALICE detector at the CERN Large Hadron Collider. The measurements cover a wide transverse momentum (p(T)) range in the rapidity interval vertical bar y vertical bar < 0.5, extending both the energy and the pT reach of previous measurements up to 3 GeV/c for A = 2 and 6 GeV/c for A = 3. The coalescence parameters of (anti) deuterons and 3 He nuclei exhibit an increasing trend with pT and are found to be compatible with measurements in pA collisions at low p(T) and lower energies. The integrated yields decrease by a factor of about 1000 for each increase of the mass number with one (anti) nucleon. Furthermore, the deuteron-to-proton ratio is reported as a function of the average charged particle multiplicity at different center-of-mass energies.
The invariant differential cross sections for inclusive pi(0) and eta mesons at midrapidity were measured in pp collisions at root s = 2.76 TeV for transverse momenta 0.4 < pT < 40 GeV/c and 0.6 < pT < 20 GeV/c, respectively, using the ALICE detector. This large range in pT was achieved by combining various analysis techniques and different triggers involving the electromagnetic calorimeter (EMCal). In particular, a newsingle-cluster, shower-shape based method was developed for the identification of high-pT neutral pions, which exploits that the showers originating from their decay photons overlap in the EMCal. Above 4 GeV/c, the measured cross sections are found to exhibit a similar power-law behavior with an exponent of about 6.3. Next-to-leading-order perturbative QCD calculations differ from the measured cross sections by about 30% for the pi(0), and between 30-50% for the. meson, while generator-level simulations with PYTHIA 8.2 describe the data to better than 10-30%, except at pT < 1 GeV/c. The new data can therefore be used to further improve the theoretical description of pi(0) and eta meson production.
The production of pi(+), pi(-), K(+), K(-), p, and (p) over bar at mid-rapidity has been measured in proton-proton collisions at root s = 900 GeV with the ALICE detector. Particle identification is performed using the specific energy loss in the inner tracking silicon detector and the time projection chamber. In addition, time-of-flight information is used to identify hadrons at higher momenta. Finally, the distinctive kink topology of the weak decay of charged kaons is used for an alternative measurement of the kaon transverse momentum (p(t)) spectra. Since these various particle identification tools give the best separation capabilities over different momentum ranges, the results are combined to extract spectra from p(t) = 100 MeV/c to 2.5 GeV/c. The measured spectra are further compared with QCD-inspired models which yield a poor description. The total yields and the mean pt are compared with previous measurements, and the trends as a function of collision energy are discussed.
The transverse momentum distributions of the strange and double-strange hyperon resonances ( Sigma ( 1385)(+/-), Xi ( 1530)(0)) produced in p-Pb collisions at root s(NN) = 5.02 TeV were measured in the rapidity range -0.5 < yCMS < 0 for event classes corresponding to different charged-particle multiplicity densities, < dN(ch)/d eta(lab)> . The mean transverse momentumvalues are presented as a function of < dNch/d eta(lab)>, as well as a function of the particle masses and compared with previous results on hyperon production. The integrated yield ratios of excited to ground- state hyperons are constant as a function of < dN(ch)/d eta(lab)>. The equivalent ratios to pions exhibit an increase with < dN(ch)/ d eta(lab)>, depending on their strangeness content.
The production of the strange and double-strange baryon resonances (Sigma (1385)(+/-), Xi (1530)(0)) has been measured at mid-rapidity (vertical bar y vertical bar < 0.5) in proton-proton collisions at root s = 7 TeV with the ALICE detector at the LHC. Transverse momentum spectra for inelastic collisions are compared to QCD-inspired models, which in general underpredict the data. A search for the phi (1860) pentaquark, decaying in the Xi pi channel, has been carried out but no evidence is seen.
The charged-particle pseudorapidity density measured over four units of pseudorapidity in nonsingle-diffractive p + Pb collisions at a center-of-mass energy per nucleon pair root s(NN) = 5.02 TeV is presented. The average value at midrapidity is measured to be 16.81 +/- 0.71 (syst), which corresponds to 2.14 +/- 0.17 (syst) per participating nucleon, calculated with the Glauber model. This is 16% lower than in nonsingle-diffractive pp collisions interpolated to the same collision energy and 84% higher than in d + Au collisions at root s(NN) = 0.2 TeV. The measured pseudorapidity density in p + Pb collisions is compared to model predictions and provides new constraints on the description of particle production in high-energy nuclear collisions. DOI: 10.1103/PhysRevLett.110.032301
The ALICE experiment at the LHC has studied inclusive J/psi production at central and forward rapidities in pp collisions at root s = 7 TeV. In this Letter, we report on the first results obtained detecting the J/psi through the dilepton decay into e(+)e(-) and mu(+)mu(-) pairs in the rapidity ranges vertical bar y vertical bar < 0.9 and 2.5 < y < 4, respectively, and with acceptance down to zero PT. In the dielectron channel the analysis was carried Out on a data sample corresponding to an integrated luminosity L(int) = 5.6 nb(-1) and the number of signal events is N(J/psi) = 352 +/- 32 (stat.) +/- 28 (syst.): the corresponding figures in the dimuon channel are L(int) = 15.6 nb(-1) and N(J/psi) = 1924 +/- 77 (stat.) +/- 144 (syst.). The measured production cross sections are sigma(J/psi) (vertical bar y vertical bar < 0.9) = 10.7 +/- 1.0 (stat.) +/- 1.6 (syst.)(-2.3)(+1.6) (syst.pol.) mu b and sigma(J/psi) (2.5 < y < 4) = 6.31 +/- 0.25 (stat.) +/- 0.76 (syst.)(-1.96)(+0.95) (syst.pol.) mu b. The differential cross sections, in transverse momentum and rapidity, of the J/psi were also measured. (C) 2011 CERN. Published by Elsevier B.V. All rights reserved.
We have studied the transverse-momentum (p(T)) dependence of the inclusive J/psi production in p-Pb collisions at root s(NN) = 5.02 TeV, in three center-of-mass rapidity (y(cms)) regions, down to zero p(T). Results in the forward and backward rapidity ranges (2.03 < y(cms) < 3.53 and -4.46 < y(cms) < -2.96) are obtained by studying the J/psi decay to mu(+)mu(-), while the mid-rapidity region (-1.37 < y(cms) < 0.43) is investigated by measuring the e(+)e(-) decay channel. The p(T) dependence of the J/psi production cross section and nuclear modification factor are presented for each of the rapidity intervals, as well as the J/psi mean p(T) values. Forward and mid-rapidity results show a suppression of the J/psi yield, with respect to pp collisions, which decreases with increasing p(T). At backward rapidity no significant J/psi suppression is observed. Theoretical models including a combination of cold nuclear matter effects such as shadowing and partonic energy loss, are in fair agreement with the data, except at forward rapidity and low transverse momentum. The implications of the p-Pb results for the evaluation of cold nuclear matter effects on J/psi production in Pb-Pb collisions are also discussed.
The measurement of azimuthal correlations of charged particles is presented for Pb-Pb collisions at root S-NN 2.76 TeV and p-Pb collisions at root S-NN 5.02 TeV with the ALICE detector at the CERN Large Hadron Collider. These correlations are measured for the second, third and fourth order flow vector in the pseudorapidity region vertical bar eta vertical bar 0.8 as a function of centrality and transverse momentum pT using two observables, to search for evidence of PT-dependent flow vector fluctuations. For Ph-Ph collisions at 2.76 TeV, the measurements indicate that PT-dependent fluctuations are only present for the second order flow vector. Similar results have been found for p-Pb collisions at 5.02 TeV. These measurements are compared to hydrodynamic model calculations with event-by-event geometry fluctuations in the initial state to constrain the initial conditions and transport properties of the matter created in Ph-Ph and p-Pb collisions.
ALICE is one of four large experiments at the CERN Large Hadron Collider near Geneva, specially designed to study particle production in ultra-relativistic heavy-ion collisions. Located 52 meters underground with 28 meters of overburden rock, it has also been used to detect muons produced by cosmic ray interactions in the upper atmosphere. In this paper, we present the multiplicity distribution of these atmospheric muons and its comparison with Monte Carlo simulations. This analysis exploits the large size and excellent tracking capability of the ALICE Time Projection Chamber. A special emphasis is given to the study of high multiplicity events containing more than 100 reconstructed muons and corresponding to a muon areal density rho(mu) > 5.9 m(-2). Similar events have been studied in previous underground experiments such as ALEPH and DELPHI at LEP. While these experiments were able to reproduce the measured muon multiplicity distribution with Monte Carlo simulations at low and intermediate multiplicities, their simulations failed to describe the frequency of the highest multiplicity events. In this work we show that the high multiplicity events observed in ALICE stem from primary cosmic rays with energies above 10(16) eV and that the frequency of these events can be successfully described by assuming a heavy mass composition of primary cosmic rays in this energy range. The development of the resulting air showers was simulated using the latest version of QGSJET to model hadronic interactions. This observation places significant constraints on alternative, more exotic, production mechanisms for these events.
We report on the measurement of the inclusive Upsilon(1S) production in Pb-Pb collisions at root s(NN) = 2.76 TeV carried out at forward rapidity (2.5 < y < 4) and down to zero transverse momentum using its mu(+)mu(-) decay channel with the ALICE detector at the Large Hadron Collider. Astrong suppression of the inclusive Upsilon(1S) yield is observed with respect to pp collisions scaled by the number of independent nucleo-nnucleon collisions. The nuclear modification factor, for events in the 0-90% centrality range, amounts to 0.30 +/- 0.05(stat) +/- 0.04(syst). The observed Upsilon(1S) suppression tends to increase with the centrality of the collision and seems more pronounced than in corresponding mid-rapidity measurements. Our results are compared with model calculations, which are found to underestimate the measured suppression and fail to reproduce its rapidity dependence. (C) 2014 The Authors. Published by Elsevier B. V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP(3).
The ALICE Collaboration has studied the inclusive production of the charmonium state psi(2S) in proton-lead (p-Pb) collisions at the nucleon-nucleon centre of mass energy root sNN=5.02TeV at the CERN LHC. The measurement was performed at forward(2.03 < y<INF>cms</INF> < 3.53) and backward (-4.46 < y<INF>cms</INF> < -2.96) centre of mass rapidities, studying the decays into muon pairs. In this paper, we present the inclusive production cross sections sigma<INF>psi(2S)</INF>, both integrated and as a function of the transverse momentum pT, for the two y<INF>cms</INF> domains. The results are compared to those obtained for the 1S vector state (J/psi), by showing the ratios between the production cross sections, as well as the double ratios [sigma<INF>psi(2S)</INF>/sigma<INF>J/psi</INF>]pPb/[sigma<INF>&<INF >(2S)</INF>/sigma J/&PSI]pp between p-Pb and proton-proton collisions. Finally, the nuclear modification factor for inclusive psi(2S) is evaluated and compared to the measurement of the same quantity for J/psi and to theoretical models including parton shadowing and coherent energy loss mechanisms. The results show a significantly larger suppression of the psi(2S) compared to that measured for J/psi and to models. These observations represent a clear indication for sizeable final state effects on psi(2S) production.
Inclusive transverse momentum spectra of primary charged particles in Pb-Pb collisions at root s(NN) = 2.76 TeV have been measured by the ALICE Collaboration at the LHC. The data are presented for central and peripheral collisions, corresponding to 0-5% and 70-80% of the hadronic Pb-Pb cross section. The measured charged particle spectra in |eta| < 0.8 and 0.3 < p(T) < 20 GeV/c are compared to the expectation in pp collisions at the same root s(NN), scaled by the number of underlying nucleon-nucleon collisions. The comparison is expressed in terms of the nuclear modification factor R-AA. The result indicates only weak medium effects (R-AA approximate to 0.7) in peripheral collisions. In central collisions, R-AA reaches a minimum of about 0.14 at p(T) = 6-7 GeV/c and increases significantly at larger p(T). The measured suppression of high-p(T) particles is stronger than that observed at lower collision energies, indicating that a very dense medium is formed in central Pb-Pb collisions at the LHC. (C) 2010 CERN. Published by Elsevier B.V. All rights reserved.
The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/c in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both for jet, light nuclei, and electron selection. (c) 2017 CERN for the benefit of the Authors. Published by Elsevier B.V.
The production of prompt charmed mesons D-0, D+ and D*(+), and their antiparticles, was measured with the ALICE detector in Pb-Pb collisions at the centre-of-mass energy per nucleon pair, root s(NN), of 2.76 TeV. The production yields for rapidity vertical bar y vertical bar < 0.5 are presented as a function of transverse momentum, p(T), in the interval 1-36 GeV/c for the centrality class 0-10% and in the interval 1-16 GeV/c for the centrality class 30-50%. The nuclear modification factor R-AA was computed using a proton-proton reference at root s = 2.76 TeV, based on measurements at root s = 7 TeV and on theoretical calculations. A maximum suppression by a factor of 5-6 with respect to binary-scaled pp yields is observed for the most central collisions at p(T) of about 10 GeV/c. A suppression by a factor of about 2-3 persists at the highest p(T) covered by the measurements. At low p(T) (1-3 GeV/c), the R-AA has large uncertainties that span the range 0.35 (factor of about 3 suppression) to 1 (no suppression). In all p(T) intervals, the R-AA is larger in the 30-50% centrality class compared to central collisions. The D-meson R-AA is also compared with that of charged pions and, at large p(T), charged hadrons, and with model calculations.
The transverse momentum (pT) distribution of primary charged particles is measured at midrapidity in minimum-bias p-Pb collisions at root S-NN = 5.02 TeV with the ALICE detector at the LHC in the range 0.15 < pT < 50 GeV/c. The spectra are compared to the expectation based on binary collision scaling of particle production in pp collisions, leading to a nuclear modification factor consistent with unity for pT larger than 2 GeV/c, with a weak indication of a Cronin-like enhancement for pT around 4 GeV/c. The measurement is compared to theoretical calculations and to data in Pb-Pb collisions at root S-NN = 2.76 TeV.
The transverse momentum (pT) distribution of primary charged particles is measured in minimum bias (non-single-diffractive) p + Pb collisions at root(NN)-N-s = 5.02 TeV with the ALICE detector at the LHC. The pT spectra measured near central rapidity in the range 0.5< p(T) < 20 GeV/c exhibit a weak pseudorapidity dependence. The nuclear modification factor R-pPb is consistent with unity for p(T) above 2 GeV/c. This measurement indicates that the strong suppression of hadron production at high p(T) observed in Pb + Pb collisions at the LHC is not due to an initial-state effect. The measurement is compared to theoretical calculations. DOI: 10.1103/PhysRevLett.110.082302
We report the results of the femtoscopic analysis of pairs of identical pions measured in p-Pb collisions at root(NN)-N-S = 5.02 TeV. Femtoscopic radii are determined as a function of event multiplicity and pair momentum in three spatial dimensions. As in the pp collision system, the analysis is complicated by the presence of sizable background correlation structures in addition to the femtoscopic signal. The radii increase with event multiplicity and decrease with pair transverse momentum. When taken at comparable multiplicity, the radii measured in p-Pb collisions, at high multiplicity and low pair transverse momentum, are 10%-20% higher than those observed in pp collisions but below those observed in A-A collisions. The results are compared to hydrodynamic predictions at large event multiplicity as well as discussed in the context of calculations based on gluon saturation.
Correlations induced by quantum statistics are sensitive to the spatiotemporal extent as well as dynamics of particle-emitting sources in heavy-ion collisions. In addition, such correlations can be used to search for the presence of a coherent component of pion production. Two- and three-pion correlations of same and mixed charge are measured at low relative momentum to estimate the coherent fraction of charged pions in Pb-Pb collisions at root S-NN = 2.76 TeV at the CERN Large Hadron Collider with ALICE. The genuine three-pion quantum statistics correlation is found to be suppressed relative to the two-pion correlation based on the assumption of fully chaotic pion emission. The suppression is observed to decrease with triplet momentum. The observed suppression at low triplet momentum may correspond to a coherent fraction in charged-pion emission of 23% +/- 8%.
The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb collisions at root(NN)-N-S = 2.76 TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC.
The W and Z boson production was measured via the muonic decay channel in proton-lead collisions at root s(NN) = 5.02 TeV at the Large Hadron Collider with the ALICE detector. The measurement covers backward (4.46 < y(cms) < 2.96) and forward (2.03 < y(cms) < 3.53) rapidity regions, corresponding to Pb-going and p-going directions, respectively. The Z-boson production cross section, with dimuon invariant mass of 60 < m(mu mu) < 120 GeV/c(2) and muon transverse momentum (p(T)(mu)) larger than 20 GeV/c, is measured. The production cross section and charge asymmetry of muons from W-boson decays with p(T)(mu) > 10 GeV/c are determined. The results are compared to theoretical calculations both with and without including the nuclear modification of the parton distribution functions. The W-boson production is also studied as a function of the collision centrality: the cross section of muons from W-boson decays is found to scale with the average number of binary nucleon-nucleon collisions within uncertainties.
The p t-differential production cross sections of the prompt (B feed-down subtracted) charmed mesons D0, D+, and D*+ in the rapidity range |y| < 0.5, and for transverse momentum 1 < p t < 12 GeV/c, were measured in proton-proton collisions at s√=2.76TeV with the ALICE detector at the Large Hadron Collider. The analysis exploited the hadronic decays D0 → K−π+, D+ → K−π+π+, D*+ → D0π+, and their charge conjugates, and was performed on a Lint=1.1nb−1 event sample collected in 2011 with a minimum-bias trigger. The total charm production cross section at s√=2.76TeV and at 7 TeV was evaluated by extrapolating to the full phase space the p t-differential production cross sections at s√=2.76TeV and our previous measurements at s√=7TeV . The results were compared to existing measurements and to perturbative-QCD calculations. The fraction of cd− D mesons produced in a vector state was also determined.
Differential cross sections of charged particles in inelastic pp collisions as a function of pT have been measured at √ s = 0.9, 2.76 and 7 TeV at the LHC. The pT spectra are compared to NLO-pQCD calculations. Though the differential cross section for an individual √ s cannot be described by NLO-pQCD, the relative increase of cross section with √ s is in agreement with NLO-pQCD. Based on these measurements and observations, procedures are discussed to construct pp reference spectra at √ s = 2.76 and 5.02 TeV up to pT = 50 GeV/c as required for the calculation of the nuclear modification factor in nucleus–nucleus and proton– nucleus collisions.
ALICE is an LHC experiment devoted to the study of strongly interacting matter in proton-proton, proton-nucleus and nucleus-nucleus collisions at ultra-relativistic energies. The ALICE VZERO system, made of two scintillator arrays at asymmetric positions, one on each side of the interaction point, plays a central role in ALICE. In addition to its core function as a trigger source, the VZERO system is used to monitor LHC beam conditions, to reject beam-induced backgrounds and to measure basic physics quantities such as luminosity, particle multiplicity, centrality and event plane direction in nucleus-nucleus collisions. After describing the VZERO system, this publication presents its performance over more than four years of operation at the LHC.
In high-energy collisions, the spatio-temporal size of the particle production region can be measured using the Bose-Einstein correlations of identical bosons at low relative momentum. The source radii are typically extracted using two-pion correlations, and characterize the system at the last stage of interaction, called kinetic freeze-out. In low-multiplicity collisions, unlike in high-multiplicity collisions, two-pion correlations are substantially altered by background correlations, e.g. mini-jets. Such correlations can be suppressed using three-pion cumulant correlations. We present the first measurements of the size of the system at freeze-out extracted from three-pion cumulant correlations in pp, p-Pb and Pb-Pb collisions at the LHC with ALICE. At similar multiplicity, the invariant radii extracted in p-Pb collisions are found to be 5-15% larger than those in pp, while those in Pb-Pb are 35-55% larger than those in p-Pb. Our measurements disfavor models which incorporate substantially stronger collective expansion in p-Pb as compared to pp collisions at similar multiplicity. © 2014 The Authors.
Correlations of two charged identical kaons (KchKch) are measured in pp collisions at √s=7 TeV by the ALICE experiment at the Large Hadron Collider (LHC). One-dimensional KchKch correlation functions are constructed in three multiplicity and four transverse momentum ranges. The KchKch femtoscopic source parameters R and λ are extracted. The KchKch correlations show a slight increase of femtoscopic radii with increasing multiplicity and a slight decrease of radii with increasing transverse momentum. These trends are similar to the ones observed for ππ and Ks0Ks0 correlations in pp and heavy-ion collisions. However at high multiplicities, there is an indication that the one-dimensional correlation radii for charged kaons are larger than those for pions in contrast to what was observed in heavy-ion collisions at the Relativistic Heavy-Ion Collider.
Measurements of charge-dependent azimuthal correlations with the ALICE detector at the LHC are reported for Pb-Pb collisions at √s_NN=2.76 TeV. Two- and three-particle charge-dependent azimuthal correlations in the pseudorapidity range |eta| < 0:8 are presented as a function of the collision centrality, particle separation in pseudorapidity, and transverse momentum. A clear signal compatible with a charge-dependent separation relative to the reaction plane is observed, which shows little or no collision energy dependence when compared to measurements at RHIC energies. This provides a new insight for understanding the nature of the charge-dependent azimuthal correlations observed at RHIC and LHC energies.
The inclusive transverse momentum (pT) distributions of primary charged particles are measured in the pseudo-rapidity range |η|<0.8 as a function of event centrality in Pb–Pb collisions at sort(s) = 2.76 TeV with ALICE at the LHC. The data are presented in the pT range 0.15<pT<50 GeV/c for nine centrality intervals from 70–80% to 0–5%. The results in Pb–Pb are presented in terms of the nuclear modification factor RAA using a pp reference spectrum measured at the same collision energy. We observe that the suppression of high-pT particles strongly depends on event centrality. The yield is most suppressed in central collisions (0–5%) with RAA≈0.13 at pT=6–7 GeV/c. Above pT=7 GeV/c, there is a significant rise in the nuclear modification factor, which reaches RAA≈0.4 for pT>30 GeV/c. In peripheral collisions (70–80%), only moderate suppression (RAA=0.6–0.7) and a weak pT dependence is observed. The measured nuclear modification factors are compared to other measurements and model calculations.
ALICE is the heavy-ion experiment at the CERN Large Hadron Collider. The experiment continuously took data during the first physics campaign of the machine from fall 2009 until early 2013, using proton and lead-ion beams. In this paper we describe the running environment and the data handling procedures, and discuss the performance of the ALICE detectors and analysis methods for various physics observables. © The Authors.
The production of muons from heavy flavour decays is measured at forward rapidity in proton–proton collisions at p s = 7 TeV collected with the ALICE experiment at the LHC. The analysis is carried out on a data sample corresponding to an integrated luminosity Lint = 16.5 nb1. The transverse momentum and rapidity differential production cross sections of muons from heavy flavour decays are measured in the rapidity range 2:5 < y < 4, over the transverse momentum range 2 < pt < 12 GeV/c. The results are compared to predictions based on perturbative QCD calculations.
The average transverse momentum 〈pT〉 versus the charged-particle multiplicity Nch was measured in p–Pb collisions at a collision energy per nucleon–nucleon pair View the MathML source and in pp collisions at collision energies of View the MathML source in the kinematic range 0.15<pT<10.0 GeV/c and |η|<0.3 with the ALICE apparatus at the LHC. These data are compared to results in Pb–Pb collisions at View the MathML source at similar charged-particle multiplicities. In pp and p–Pb collisions, a strong increase of 〈pT〉 with Nch is observed, which is much stronger than that measured in Pb–Pb collisions. For pp collisions, this could be attributed, within a model of hadronizing strings, to multiple-parton interactions and to a final-state color reconnection mechanism. The data in p–Pb and Pb–Pb collisions cannot be described by an incoherent superposition of nucleon–nucleon collisions and pose a challenge to most of the event generators.
We present the measurements of particle pair yields per trigger particle obtained from di-hadron azimuthal correlations in pp collisions at √s = 0.9, 2.76, and 7TeV recorded with the ALICE detector. The yields are studied as a function of the charged particle multiplicity. Taken together with the single particle yields the pair yields provide information about parton fragmentation at low transverse momenta, as well as on the contribution of multiple parton interactions to particle production. Data are compared to calculations using the PYTHIA6, PYTHIA8, and PHOJET event generators.
Measurements of multiparticle azimuthal correlations (cumulants) for charged particles in p-Pb at sNN=5.02 TeV and Pb-Pb at sNN=2.76 TeV collisions are presented. They help address the question of whether there is evidence for global, flowlike, azimuthal correlations in the p-Pb system. Comparisons are made to measurements from the larger Pb-Pb system, where such evidence is established. In particular, the second harmonic two-particle cumulants are found to decrease with multiplicity, characteristic of a dominance of few-particle correlations in p-Pb collisions. However, when a |Δη| gap is placed to suppress such correlations, the two-particle cumulants begin to rise at high multiplicity, indicating the presence of global azimuthal correlations. The Pb-Pb values are higher than the p-Pb values at similar multiplicities. In both systems, the second harmonic four-particle cumulants exhibit a transition from positive to negative values when the multiplicity increases. The negative values allow for a measurement of v24 to be made, which is found to be higher in Pb-Pb collisions at similar multiplicities. The second harmonic six-particle cumulants are also found to be higher in Pb-Pb collisions. In Pb-Pb collisions, we generally find v24≃v26≠0 which is indicative of a Bessel-Gaussian function for the v2 distribution. For very high-multiplicity Pb-Pb collisions, we observe that the four- and six-particle cumulants become consistent with 0. Finally, third harmonic two-particle cumulants in p-Pb and Pb-Pb are measured. These are found to be similar for overlapping multiplicities, when a |Δη|>1.4 gap is placed. © 2014 CERN, for the ALICE Collaboration.
The ALICE Collaboration at the CERN Large Hadron Collider reports the first measurement of the inclusive differential jet cross section at mid-rapidity in pp collisions at sort(s)=2.76 TeV, with integrated luminosity of 13.6 nb−1. Jets are measured over the transverse momentum range 20 to 125 GeV/c and are corrected to the particle level. Calculations based on Next-to-Leading Order perturbative QCD are in good agreement with the measurements. The ratio of inclusive jet cross sections for jet radii R=0.2 and R=0.4 is reported, and is also well reproduced by a Next-to-Leading Order perturbative QCD calculation when hadronization effects are included.
The production cross section of electrons from semileptonic decays of beauty hadrons was measured at mid-rapidity (vertical bar y vertical bar < 0.8) in, the transverse momentum range 1 < p(T) < 8 GeV/c with the ALICE experiment at the CERN LHC in pp collisions at a center of mass energy root s = 7 TeV using an integrated luminosity of 2.2 nb(-1). Electrons from beauty hadron decays were selected based on the displacement of the decay vertex from the collision vertex. A perturbative QCD calculation agrees with the measurement within uncertainties. The data were extrapolated to the full phase space to determine the total cross section for the production of beauty quark-antiquark pairs. (C) 2013 CERN. Published by Elsevier B.V. All rights reserved.
The p t-differential production cross sections of the prompt (B feed-down subtracted) charmed mesons D0, D+, and D*+ in the rapidity range |y| < 0.5, and for transverse momentum 1 < p t < 12 GeV/c, were measured in proton-proton collisions at s√=2.76TeV with the ALICE detector at the Large Hadron Collider. The analysis exploited the hadronic decays D0 → K−π+, D+ → K−π+π+, D*+ → D0π+, and their charge conjugates, and was performed on a Lint=1.1nb−1 event sample collected in 2011 with a minimum-bias trigger. The total charm production cross section at s√=2.76TeV and at 7 TeV was evaluated by extrapolating to the full phase space the p t-differential production cross sections at s√=2.76TeV and our previous measurements at s√=7TeV . The results were compared to existing measurements and to perturbative-QCD calculations. The fraction of cd− D mesons produced in a vector state was also determined.
Measurements of cross sections of inelastic and diffractive processes in proton–proton collisions at LHC energies were carried out with the ALICE detector. The fractions of diffractive processes in inelastic collisions were determined from a study of gaps in charged particle pseudo-rapidity distributions: for single diffraction (diffractive mass MX < 200 GeV/c2) σSD/σINEL = 0.21 ± 0.03, 0.20+0.07 −0.08, and 0.20+0.04 −0.07, respectively at centre-of-mass energies √s =0.9, 2.76, and 7 TeV; for double diffraction (for a pseudo-rapidity gap η > 3) σDD/σINEL = 0.11 ± 0.03, 0.12 ± 0.05, and 0.12+0.05 −0.04, respectively at √s = 0.9, 2.76, and 7 TeV. To measure the inelastic cross section, beam properties were determined with van der Meer scans, and, using a simulation of diffraction adjusted to data, the following values were obtained: σINEL = 62.8+2.4 −4.0(model) ± 1.2(lumi) mb at √s = 2.76 TeV and 73.2+2.0−4.6(model) ± √ 2.6(lumi) mb at √s = 7 TeV. The single- and double-diffractive cross sections were calculated combining relative rates of diffraction with inelastic cross sections. The results are compared to previous measurements at proton–antiproton and proton–proton colliders at lower energies, to measurements by other experiments at the LHC, and to theoretical models.
We report the first measurement of the net-charge fluctuations in Pb-Pb collisions at √s_NN=2.76 TeV, measured with the ALICE detector at the CERN Large Hadron Collider. The dynamical fluctuations per unit entropy are observed to decrease when going from peripheral to central collisions. An additional reduction in the amount of fluctuations is seen in comparison to the results from lower energies. We examine the dependence of fluctuations on the pseudorapidity interval, which may account for the dilution of fluctuations during the evolution of the system. We find that the fluctuations at the LHC are smaller compared to the measurements at the BNL Relativistic Heavy Ion Collider, and as such, closer to what has been theoretically predicted for the formation of a quark-gluon plasma.
The ALICE Collaboration has measured the inclusive production of muons from heavy-flavor decays at forward rapidity, 2.5<y<4, in pp and Pb-Pb collisions at √sNN=2.76 TeV. The pt-differential inclusive cross section of muons from heavy-flavor decays in pp collisions is compared to perturbative QCD calculations. The nuclear modification factor is studied as a function of pt and collision centrality. A weak suppression is measured in peripheral collisions. In the most central collisions, a suppression of a factor of about 3–4 is observed in 6<pt < 10 GeV/c. The suppression shows no significant pt dependence.
ALICE (A Large Ion Collider Experiment) is studying the physics of strongly interacting matter, and in particular the properties of the Quark-Gluon Plasma (QGP), using proton-proton, proton-nucleus and nucleus-nucleus collisions at the CERN LHC (Large Hadron Collider). The ALICE Collaboration is preparing a major upgrade of the experimental apparatus, planned for installation in the second long LHC shutdown in the years 2018-2019. A key element of the ALICE upgrade is the construction of a new, ultra-light, high-resolution Inner Tracking System (ITS) based on monolithic CMOS pixel detectors. The primary focus of the ITS upgrade is on improving the performance for detection of heavy-flavour hadrons, and of thermal photons and low-mass di-electrons emitted by the QGP. With respect to the current detector, the new Inner Tracking System will significantly enhance the determination of the distance of closest approach to the primary vertex, the tracking efficiency at low transverse momenta, and the read-out rate capabilities. This will be obtained by seven concentric detector layers based on a 50 μm thick CMOS pixel sensor with a pixel pitch of about 30×30 μm2. This document, submitted to the LHCC (LHC experiments Committee) in September 2013, presents the design goals, a summary of the R&D activities, with focus on the technical implementation of the main detector components, and the projected detector and physics performance. © 2014 CERN on behalf of The ALICE Collaboration.
The production of mesons containing strange quarks (K-S(0), phi) and both singly and doubly strange baryons (Lambda, (Lambda) over bar, and Xi(-) + (Xi) over bar (+)) are measured at mid-rapidity in pp collisions at root s = 0.9 TeV with the ALICE experiment at the LHC. The results are obtained from the analysis of about 250 k minimum bias events recorded in 2009. Measurements of yields (dN/dy) and transverse momentum spectra at mid-rapidity for inelastic pp collisions are presented. For mesons, we report yields (< dN/dy >) of 0.184 +/- 0.002(stat.) +/- 0.006(syst.) for K-S(0) and 0.021 +/- 0.004(stat.) +/- 0.003(syst.) for phi. For baryons, we find < dN/dy > = 0.048 +/- 0.001(stat.) +/- 0.004(syst.) for Lambda, 0.047 +/- 0.002(stat.) +/- 0.005(syst.) for (Lambda) over bar and 0.0101 +/- 0.0020(stat.) +/- 0.0009(syst.) for Xi(-) + (Xi) over bar (+). The results are also compared with predictions for identified particle spectra from QCD-inspired models and provide a baseline for comparisons with both future pp measurements at higher energies and heavy-ion collisions.
Condividi questo sito sui social