Effettua una ricerca
Gabriele Giancane
Ruolo
Ricercatore
Organizzazione
Università del Salento
Dipartimento
Dipartimento di Beni Culturali
Area Scientifica
Area 03 - Scienze chimiche
Settore Scientifico Disciplinare
CHIM/02 - Chimica Fisica
Settore ERC 1° livello
PE - Physical sciences and engineering
Settore ERC 2° livello
PE4 Physical and Analytical Chemical Sciences: Analytical chemistry, chemical theory, physical chemistry/chemical physics
Settore ERC 3° livello
PE4_4 Surface science and nanostructures
The Langmuir–Blodgett (LB) films with J aggregates of the amphiphilic MC2 merocyanine have been deeply investigated for more than two decades, mainly because of their interest for applications in photonic devices. To extend the excitation/emission wavelength range, we have studied an homologous dye, MC1, based on a shorter merocyanine chromophore, aiming at checking the ability of this compound to arrange into J aggregates within stable LB films. In this comparative MC1/MC2 investigation, we have addressed the structural and spectroscopic properties of the monomers in solution, the thermodynamic and morphological properties of the Langmuir monolayers at the air–water interface and the spectroscopic and photophysical properties, and the structural features thence obtainable, of the aggregates in the LB films. 1 H NMR experiments have shown that, in chloroform solutions, both dyes adopt planar conformations with the hydrophilic and hydrophobic groups pointing to opposite directions. Strongly attractive interactions are exhibited by both dyes towards arachidic acid in monolayers at the air– subphase interface, with a maximum stability for the 1 : 2 MC(1/2) : AA mixture. Relatively homogeneous LB multilayers have been obtained from 1 : 4 and 1 : 2 MC : AA mixtures with good transfer ratios. Absorption and emission of the LB films of MC1 are dominated by J aggregates, while those of MC2 show some H aggregate contributions too. The J aggregates of both compounds exhibit a tendency to align with the transition dipoles along the film dipping direction, only slightly tilted relative to the substrate surface; however, this tendency is more pronounced for the MC1 J aggregates. Overall, MC1 yields slightly more stable monolayers and more solid multilayers compared to MC2
Paramagnetic iron oxide nanoparticles have been synthetized and covered by a silica shell for a dual function: SiO2 capping improves the stability of the nanoparticles and at the same time promotes the bonding between the paramagnetic nanoparticles@SiO2 (MNPs@SiO2) and biogenic amines. The constituents of the paramagnetic nanoparticles have been identified to be magnetite and maghemite by Infrared and Raman spectroscopy; these optical investigations also allow confirmation of the key role of the capping layer in the interaction with the amines. The magnetic adducts with the biogenic amines can be removed simply and rapidly through the application of weak magnetic fields. The observation of the quickness and ease of biogenic amine elimination has prompted us to check the application of this new approach to real commercial wine samples containing these toxic fermentation products: their complete removal has been observed by absorption spectra, thus confirming the potential of this novel approach in agroindustrial areas and agribusiness.
An alkoxy-substituted poly(phenylene thiophene) is used in order to suspend single-walled carbon nanotubes in an organic solvent. The suspension is spread on the air–water interface of a Langmuir trough and the floating film is characterized by means of Brewster angle microscopy and UV-visible reflection spectroscopy and the compression isotherm is recorded. The polymer/carbon-nanotube blend is transferred onto different substrates using the Langmuir–Blodgett technique. AFM measurements indicate the formation of globular structures for the samples transferred at low surface-pressure values and a tubular morphology for high-pressure-deposited samples. AFM analysis is repeated on a sample exposed to soft X-rays for about 5 h and a highly organized structure of bundles of carbon nanotubes rises up. Samples with different numbers of layers are transferred onto ITO substrates by means of the Langmuir–Blodgett method and are tested as photocathodes in a photo-electrochemical cell. A Voc of 0.18 V, an Isc of 85.8mA, FF of 40.0%, and h of (6.23T103 )% are obtained.
A porous collagen-based hydrogel scaffold was prepared in the presence of iron oxide nanoparticles (NPs) and was characterized by means of infrared spectroscopy and scanning electron microscopy. The hybrid scaffold was then loaded with fluorescein sodium salt as a model compound. The release of the hydrosoluble species was triggered and accurately controlled by the application of an external magnetic field, as monitored by fluorescence spectroscopy. The biocompatibility of the proposed matrix was also tested by the MTT assay performed on 3T3 cells. Cell viability was only slightly reduced when the cells were incubated in the presence of the collagen-NP hydrogel, compared to controls. The economicity of the chemical protocol used to obtain the paramagnetic scaffolds as well as their biocompatibility and the safety of the external trigger needed to induce the drug release suggest the proposed collagen paramagnetic matrices for a number of applications including tissue engeneering and drug delivery.
Silver nanoparticles were synthesized in the presence of saccharides and ammonia (NH3) in the concentration range from 10−2 to 103 ppm to develop an optical sensor for NH3 in aqueous solutions. Ammonia affects the features of the nanoparticles obtained in a concentration-dependent manner as determined by UV–vis absorption analysis and TEM observations. Structural and morphological analysis provides the basis for the production of a colorimetric label-free sensor for ammonia. Overall, surface plasmon resonance increases when ammonia concentration rises, although the functional trend is not the same over the entire investigated ammonia concentration range. Three different ranges have been identified: very low ammonia concentrations from 0.01 to 0.2 ppm, high ammonia concentrations from 20 to 350 ppm and, most importantly, the intermediate or physiological range of ammonia from 0.5 to 10 ppm.
A conformational switching of bis(zinc octaethylporphyrin) was observed, for the first time, in a Langmuir-Schaefer film as a consequence of appropriate host-guest interactions. The spectral changes are completely reversible and the high sensitivity (similar to 20 ppb) and specificity for aromatic amines open up interesting prospects of this functional material as a performing sensor for amines.
Cu, H2-bis-porphyrin (Cu, H2-Por2), in which copper porphyrin and free-base porphyrin are linked together by an ethano-bridge, was dissolved in chloroform and spread at the air/liquid subphase interface of a Langmuir trough. The bis-porphyrin derivative, floating film was characterized by reflection spectroscopy and the surface pressure of the floating film was studied as a function of the mean area per molecule. When aromatic amines are dissolved in the subphase, an evident interaction between the bis-porphyrin host and the aromatic amine guest is observed. A clear-cut variation of the profile of surface pressure vs area per molecule curve is observed. Reflection spectroscopy highlights that the aromatic amines dissolved in the subphase are able to induce the syn-to-anti conformational switching in the bis-porphyrin derivative. The Langmuir-Schaefer technique has been used to transfer the floating bisporphyrin film (when using pure water as a subphase) to a surface plasmon resonance (SPR) substrate and the resulting device was able to detect the presence of aniline at concentrations as low as 1 nM in aqueous solution. The high selectivity of the SPR sensing device has been verified by checking the spectral response of the active layer towards other analytes dissolved in the aqueous solutions.
The synthetic conjugated poly(1, 4-arylene-2, 5-thienylene) containing benzo[c][2,1,3]thiadiazole monomeric units (Bz-PAT) is proposed as active layer for the selective detection of mercuric ions. The Bz-PAT polymer chemical structure induces the formation of a disordered film with numerous vacancies and the size of these defects could be exploited for a reversible trapping of mercuric ions. For these reasons the Langmuir-Schaefer (LS) deposition method has been employed for transferring Bz-PAT layers with the desired accurate bi-dimensional organization control of the layer and with a high control of the deposition parameters. In this contribution, the frequency variation of a quartz crystal microbalance with 10, 20, 30 and 40 LS runs of Bz-PAT has been investigated in response to the injection of aqueous solutions of HgCl2, Pb(NO3)2, NiCl2, CdCl2 and ZnSO4 at different concentrations (0.5 mM, 1 mM, 5 mM). An almost linear dependence on the number of the LS layers and hence on the film thickness, measured by means of ellipsometric spectroscopy, has been found in terms of sensor response to concentration of Hg2+ ions fluxed. By means of UV-Vis spectroscopy, the variations in the -* absorption band of the polymer, attributed to the thiophene segment, induced by HgCl2 injection has been analyzed and explained as a consequence of the electron transfer from the mercuric ion to the polymer solid film. These results, together with the linear relation found between the number of deposited layers and LS film thickness, suggest that the sensing mechanism can be explained both by an electron interaction active layer and analyte and a diffusion mechanism of Hg2+ into the solid film that reaches an asymptotic value at 30 runs (about 80 nm), then a higher number of layers does not influence the sensor sensibility.
A totally green synthesis protocol has been adopted to obtain silver nanoaggregates capped by the natural compound (1E, 6E)-1,7-Bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5- diene), also known as curcumin. The synthesis process has been monitored by means of infrared, Raman, visible and fluorescence spectroscopies. Characterization confirms that curcumin reduces and caps the nanoparticles and such procedure allows its solubility in water and drastically increases the curcumin stability. Silver nanoparticles (AgNPs)/curcumin complex has been dispersed in a water solution containing a known nickel ion concentration. After three days a grey precipitate is observed and the nickel concentration in the solution is reduced of about 70%.
Ethane-bridged Zn porphyrins dimers (ZnPP) have been deposited by Langmuir–Schäfer (LS) deposi- tion technique onto proper transducer layers for surface plasmon resonance (SPR) and magneto-optical surface plasmon resonance (MO-SPR) characterization techniques performed in controlled atmosphere. This last tool has emerged as a novel and very performing sensing technique using as transducer layers a combination of noble and magnetic layers deposited onto glass substrates. A magnetic actuation allows recording a magneto optical SPR signal which ensures best gas sensing performances in terms of signal to noise ratio, sensitivity and limit of detection parameters. Primary and secondary amines in vapour phase have been used as sensing analytes and a possible explanation of the mechanism as well as of the dynamics of the interaction with the sensing Zn Porphyrin layers is provided
The development of biocompatible collagen substrates able to conduct electric current along specific pathways represent an appealing issue in tissue engineering, since it is well known that electrical stimuli significantly affects important cell behaviour, such as proliferation, differentiation, directional migration, and, therefore, tissue regeneration. In this work, a cheap and easy approach was proposed to produce collagen-based films exhibiting enhanced electrical conductivity, through the simple manipulation of a weak external magnetic trigger. Paramagnetic iron oxide nanoparticles (NPs) capped by a biocompatible polyethylene-glycol coating were synthetized by a co-precipitation and solvothermic method and sprayed onto a collagen suspension. The system was then subjected to a static external magnetic field in order to conveniently tune NPs organization. Under the action of the external stimulus, NPs were induced to orient along the magnetic field lines, forming long-range aligned micropatterns within the collagen matrix. Drying of the substrate following water evaporation permanently blocked the magnetic architecture produced, thereby preserving NPs organization even after magnetic field removal. Electrical conductivity measurements clearly showed that the presence of such a magnetic framework endowed collagen with marked conductive properties in specific directions. The biocompatibility of the paramagnetic collagen films was also demonstrated by MTT cell cytotoxicity test.
Two of the most known properties of ZnO were used to improve the performance of a dye-sensitized solar cell (DSSC) using a nanoadduct formed by zinc oxide and the well-known ruthenium dye N719.The wurtzite form of zinc oxide suffers from piezoelectricity and its energetic levels are very similar to those of the most used inorganic semiconductor employed in DSSCs, that is, TiO2 . We demonstrate that the synthesis of a ZnO@N719 nanoadduct does not affect the electronic communication between the inorganic semiconductor and the organic dye. The I–V characteristics in the dark and under illumination highlight a photoactivity of the ZnO@N719 active layer with values of Jsc, Voc and fill factor comparable to the data reported in the literature. When a mechanical strain is applied to the ZnO@N719 film, a piezopotential is recorded and it depends on the intensity of the applied pressure. According to the piezotronic effect, mechanical strain contributes to increase the open circuit voltage by about 14%.
This work reports on the structural and spectroscopic properties, as well as the gas-sensing performance, of ethane-bridged Zn porphyrin dimers (ZnPP) in Langmuir−Schafer (LS) thin ̈ films toward volatile organic compounds in a magneto-optical surface plasmon resonance (MOSPR) configuration. Structural and spectroscopic properties of ethane-bridged ZnPP thin films deposited onto proper Au/Co/Au magneto-optical substrates were inspected in dry air conditions and after exposure to amine vapors by means of IR spectroscopy, scanning probe microscopy, and MOSPR techniques. The molecular organization of the thin films deposited by the LS technique is investigated. The overall results suggest the presence in all cases of mainly the anti-conformer of the investigated porphyrin dimers. The strong interaction between n-butylamine vapors at high concentration and Zn porphyrin thin layers leads to a great conformational change in the porphyrin structure, which is linked to a change in the optical anisotropy of the realized LS layer.
Thin film of ethane bridged Zn-Porphyrin dimers is deposited via Langmuir-Schäfer (LS) technique over Au/Co/Au transducers properly realized on glass substrates. They have been tested as sensing layers in the novel Magneto-Optical Surface Plasmon Resonance (MO-SPR) sensor for monitoring the controlled adsorption of molecules of a volatile compound such as tert-butylamine vapours. The sensing performance of the organic layer onto the novel MO-SPR transductor sensor has been evaluated.
Glass micromachining is a basic technology to achieve microfluidic networks for lab-on-a-chip applications. Among several methods to microstructure glass, the simplest and most widely applied is wet chemical etching (WE). However, accurate control of the reaction conditions to perform reproducible, fast and safe glass etching is not straightforward. Herein, microwave-assisted WE is demonstrated to intensify the glass etching action under safe working and finely monitored operative conditions and to produce smooth deep channels in short processing times with reduced underetching effects.
From the inscription of the General Post Office in Washington DC: “The stamp is the propagator of news, links between distant families, messenger between friends, solace in solitude, a vehicle for commerce and industry, an element of human progress, promoting brotherhood, peace, goodwill among men and nations”. It’s hard to imagine how much history can be held in a small piece of paper and how many purposes this little object was destined to have. This is why postage stamps have reached so much importance and interest, which they began to be considered as work of art actually. In order to see beyond the careful eye of the philatelist, FTIR (Fourier Transform Infrared Spectroscopy) in ATR (Attenuated Total Reflection) mode has been successfully employed in material characterization of many stamps. Samples since 1861, year of the unification of the Kingdom of Italy, until to date, across a vast philatelic collection, has been characterized in this study. The immediate response of this type of spectroscopic technique let to achieve significant data information, which led to design history changes in paper making technologies. The first mail stamps published in Italy portrayed King Vittorio Emanuele II and it showed to be made of sheet of cellulose paper. Going forward in years, many differences were detected in paper composition. The mail stamps were also observed by fluorescence microscopy, in order to determine differences in the application of fluorescence. The analyses were performed without any alteration of the samples and no removal of material was needed, which represents the “conditio sine qua non” for investigations on these kinds of Cultural Heritage.
Self-assembly of block copolymers into well-defined, ordered arrangements of chemically distinct domains is a reliable strategy for preparing tailored nanostructures. Microphase separation results from the system, minimizing repulsive interactions between dissimilar blocks and maximizing attractive interactions between similar blocks. Supramolecular methods have also achieved this separation by introducing small-molecule additives binding specifically to one block by noncovalent interactions. Here, we use halogen bonding as a supramolecular tool that directs the hierarchical self-assembly of low-molecular-weight perfluorinated molecules and diblock copolymers. Microphase separation results in a lamellar-within-cylindrical arrangement and promotes upright cylindrical alignment in films upon rapid casting and without further annealing. Such cylindrical domains with internal lamellar self-assemblies can be cleaved by solvent treatment of bulk films, resulting in separated and segmented cylindrical micelles stabilized by halogen-bond-based supramolecular crosslinks. These features, alongside the reversible nature of halogen bonding, provide a robust modular approach for nanofabrication.
A new and simple method is presented to fluorinate the surfaces of poorly reactive hydrophobic polymers in a more environmentally friendly way using the protein hydrophobin (HFBII) as a nanosized primer layer. In particular, HFBII, via electrostatic interactions, enables the otherwise inefficient binding of a phosphate-terminated perfluoropolyether onto polystyrene, polypropylene, and low-density polyethylene surfaces. The binding between HFBII and the perfluoropolyether depends significantly on the environmental pH, reaching the maximum stability at pH 4. Upon treatment, the polymeric surfaces mostly retain their hydrophobic character but also acquire remarkable oil repellency, which is not observed in the absence of the protein primer. The functionalization proceeds rapidly and spontaneously at room temperature in aqueous solutions without requiring energy-intensive procedures, such as plasma or irradiation treatments.
Single-walled carbon nanotubes (SWCNTs) were suspended in 1,2-dichloroethane by noncovalent functionalization with a low-band-gap conjugated polymer 1 alternating dialkoxyphenylene−bisthiophene units with benzo-[c][2,1,3]thiadiazole monomeric units. The suspended 1/SWCNT blend was transferred onto different solid substrates by the Langmuir−Schaefer deposition method, resulting in films with a high percentage of aligned nanotubes. Photoelectrochemical characterization of 1/SWCNT thin films on indium−tin oxide showed the benefits of SWCNT alignment for photoconversion efficiency.
The specific design of a collagen scaffold containing iron oxide nanostructures capped by a TiO2 (anatase) layer is reported. The TiO2 shell is proposed with a dual role: as an innovative and biocompatible cross-linker agent, providing binding sites to the protein moiety, through the well-known TiO2 chemical affinity towards carboxyl groups, and as a protective surface layer from oxidation for the paramagnetic core. Simultaneously, the presence of the nanostructures confers to the collagen gel the sensitivity to an external stimulus, i.e. the application of a magnetic field. The hybrid biomaterial was demonstrated to be healthy and was proposed as a smart scaffold for the on demand release of bioactive compounds. The tunable release upon magnetic field application of a model protein, i.e. myoglobin, was investigated. Myoglobin was loaded in the microporous material and the discharging was induced by consecutive magnet applications, obtaining the release of the protein with a high spatio-temporal and dosage control.
1 MeV copper ions were implanted in polycarbonate (PC) matrices with fluences ranging from 5 × 1013 ions cm-2 to 1 × 1017 ions cm-2 in order to modify the optical and electrical properties of the polymer host. Increasing the ion fluence, an increase of the overall absorption and a redshift of the optical band gap were observed, from the initial value of 3.40 eV for the pristine PC to 0.80 eV measured for 1 × 1017 ions cm-2. For fluences above 5 × 1014 ions cm-2 a broad optical absorption bands at 450-475 nm and 520 nm were observed and, from 1 × 1016 ions cm-2, an additional band appeared at 570 nm. Both bands redshift when the fluence is increased. On the contrary, the optical response of the highest fluence sample is characterized by an overall band at 580 nm. The chemical modifications observed in the polymer ranges from induced -OH stretching, CO and -CC- double bonds and -CC and CH triple bonds formation, as the ion fluence increases. The implantation process affects the electrical properties of the polymer inducing a strong reduction in sheet resistance when ion fluence exceeds 5 × 1016 ions cm-2. A value of ∼7.1 × 107 Ω/sq has been obtained for the highest fluence, i.e. about 10 order of magnitude lower than the pristine PC.
A supramolecular adduct formed by the interaction among octadecylamine (ODA) and zinc oxide nanostructures was promoted. A stable dispersion of the ZnO@ODA adduct was obtained and characterized by means of thermogravimetric analysis and infrared and Raman spectroscopy. Then, the supramolecular adduct was spread at the air/water interface of a Langmuir trough. The presence of octadecylamine gave amphiphilic features to the ZnO@ODA adduct that was transferred from the air/water interface to solid substrates by Langmuir-Schaefer (LS) method. The transferred film was characterized by tunnel electron microscopy that highlighted rectangular well-shaped structures assembled by nanostructure of ZnO arranged in an ODA matrix. Piezoelectric feature of large LS film (1 cm2) was tested and a very promising response was observed as a consequence of the application of a pressure of 1 kPa.
Oil bodies (OBs) are micelle-like structures with an outer phospholipid monolayer embedding some specific proteins (oleosins) and surrounding a hydrophobic core of triacylglycerols (TAGs). Oleosins are alkaline hairpin-like proteins that are anchored into the OBs structure with their hydrophilic domains covering the surface. We performed surface pressure (Π) and Brewster Angle Microscopy investigations of reconstituted OBs (ROBs) and of trypsin digested ROBs. The obtained Π vs time isotherms clearly show the formation of a surface layer. Upon ROBs suspension injection into the subphase, a clear-cut Π enhancement is recorded, followed by a long plateau region for ROBs suspensions more concentrated than 12.5 μg/ml. The BAM analysis highlighted the presence of a dark background, ascribable to a 2D layer due to free components rearrangement and brilliant circular 3D domains, due to unaltered ROBs or small aggregates of ROBs. Increasing ROBs concentration, large domains appeared. We hypothesize that the presence of an excess of free TAGs in the 2D layer is crucial for the generation of such domains. We verified the generation of such typical structures, studying the behavior of a ROBs suspension (concentration of 12.5 μg/ml) with two different approaches: after injection under a concentrated TAGs floating layers and after digestion with trypsin. These two procedures resulted in similar effects since proteinase digestion is like to induce the same morphology of a TAGs excess.
Time travel through 150 years of Italian postage stamp issues has allowed defining the evolution of the recurring pigments in stamp designs by means of Raman and FTIR spectroscopy. Numerous exemplars have been analyzed, covering the entire production of stamps for both the Italian Kingdom and Republic. Raman and FTIR spectra showed the changeover from Prussian blue to copper phthalocyanine inks in 1958. The entire succession for red inks was also recognized to develop from the original cinnabar to red ochre and minium and finally to red azo pigments. The changes in orange printing ink proceeded on a similar path. The first orange Italian exemplar was printed employing a mixture of chrome orange and red ochre. In 1929 this combination was replaced by azo pigments. Green stamps belonging to the first issues entailed the choice of blue and orange inks, namely chrome orange and Prussian blue. Later on, an ink composed mainly of phthalocyanine was employed as the green dye. The merging of data coming from Raman microscopy and FTIR-ATR spectroscopy, both non-destructive techniques, has allowed the characterization of stamp designs and potentially provides direct and fast evidence for the recognition of forged exemplars.
The evolution of the connections between Art and Science have been continually developing over the last few years. These links have led to many scientific characterisation and analysis techniques becoming increasingly applied to study works of art and artifacts. Today’s science and technology developments have led to many different approaches being used in the study of Cultural Heritage. New non-destructive methodologies allow one to apply physical and chemical analysis methods to valuable objects. Fourier transform infrared (FT-IR) spectroscopy has become a particularly useful technique in this field for the characterization of material composition; in particular, the use of the attenuated total reflection (ATR) sampling technique allows one to analyse a wide range and type of valuable objects without causing any damage to the samples. Capable of seeing beyond the careful eye of the restorer or of the art historian, the FT-IR/ ATR technique has been successfully employed in the material characterization of many different samples coming from the world of art. The first systematic studies using spectroscopic investigations on stamps were performed using both the FT-IR and Raman spectroscopic techniques. The immediate and detailed response from this type of study has led to a large and very significant amount of data and informainformation becoming available. Information which gives, not only an insight into the materials that compose a particular work of art, but also provide guidelines that supply further awareness important to conservative and restoration treatments. Discovering the ancient secrets of the artists and the real composition of art objects can be the key enlightening cases under study, which until that moment had been unresolved.
A Fourier transform infrared (FT-IR) spectroscopy study on the entire Italian postage stamps production is presented in this work. Crossing 150 years of issues from the unification of Italy until today, a time line of the major components constituting the stamps has been defined, based on the wide spectral database built on the basis of the numerous analyzed exemplars. Even though it is easy to find reports about stamps’ issues history, information arising from these investigations contributes to throw light upon the substances incorporated in the stamps, which could be described as hybrid or composite materials (a sort of undisclosed or hidden story). As a result of the whole spectra acquired in attenuated total reflectance (ATR) mode, changes in paper composition showed the transition from the protein sizing glue to starch sizing; also the employment of kaolin varied through time. First it was used as the extender in the pigment−medium mixture, and finally it constituted the coating on the stamp surface. Also the chemical composition of the adhesive gum on the rear side of stamps has been subjected to modifications, as well as the front side. The earliest back glue was a protein-based adhesive; then it was replaced by gum arabic first and by poly(vinyl acetate) (PVAC) later. FT-IR spectroscopy, supported by the detailed database developed, has been applied, for the first time, in the very useful detection of two counterfeit samples: a fake of the famous Gronchi Rosa, issued in 1961, and a regummed 2 cent red stamp, issued in 1865. The information held in the whole spectral data has been selected and employed in the principal component analysis (PCA) statistical analysis.
In the present manuscript it is reported a study carried out by means of micro-Raman and infrared spectroscopy on banknotes used in Italy during more than 50 years, since 1947 until 2001. For each specimen, three different features of the banknote (serial number, watermark and security mark) were considered and the measurements were repeated on three different banknotes of the same type. Differences were revealed in the paper banknote composition, red color used for the security mark and serial number black printing ink. Then, two certified fakes were analyzed and significant shifts on the main peak of red color pigment were revealed
The mechanisms of interaction between a tetrapyridyl-substituted porphyrin and Hg(II) and Cu(II) ions have been investigated by means of different spectroscopic techniques. Reflection spectroscopy investigations of the porphyrin Langmuir floating film and by polarization modulation infrared (IR) reflection adsorption spectroscopy at the air−water interface provided evidence of the active role played by the pyridyl substituents of the porphyrin in the interaction with the analyte. Such behavior seems to be very selective toward Cu2+ and Hg2+ ions, as demonstrated by the IR measurements in difference mode. UV−vis and IR characterizations suggest a deeply different interaction between the active molecules and the two analytes. In fact, the interaction of Hg2+ ions with the tetrapyrrolic derivative molecules involves both the pyridyl substituents and the central bite of the ring. On the other hand, in the case of Cu2+ ions, spectroscopic evidence suggests that the cupric ions interact with only the porphyrin peripheral substituents. A relevant fluorescence quenching of the Langmuir−Schaefer (LS) film is observed when even a 0.5 nM HgCl2 or 0.5 nM CuCl2 aqueous solution is fluxed on the LS film.
Porphyrins are tetrapyrrolic macrocycles with a fascinating and multifarious variegation of properties of essential significance in up-to-date and leading technologies. From a different point of view, the Langmuir–Blodgett technique allows the immobilisation of films with an accurate regulation of molecular organisation and thickness. As a logical upshot, this manuscript concerns a substantial object of consideration in contemporary research, the utilisation of Langmuir–Blodgett multilayers of porphyrins in sensing elements for the detection of analytes in different matrices. Investigations on themorphological, optical, structural and surface characteristics of these films are remarkably related to the significant properties of sensors with the ultimate goal of rationalising the innermost intercourses between the sensing behaviour and the peculiarities and molecular organisation brought about by the deposition method. The integration of the typical electrical and optical characteristics of porphyrins with the potentialities of the Langmuir–Blodgett multilayer has originated not only encouraging projects but has afforded also certainties on the accomplishment of operative chemical sensors.
Carbon nanotubes are recent materials with an extremely appealing multiplicity of peculiar characteristics of paramount interest in contemporary advanced (nano)technologies. At the same time, the Langmuir–Blodgett technique allows to fabricate films with a substantial control and chance of modulation over thickness and molecular organisation. As a spontaneous outcome, this review deals with an actual subject of attention in up-to-date scientific investigations, i.e. the preparation, characterisation and applications of Langmuir–Blodgett films of pristine or functionalised single- or multi-walled carbon nanotubes in modern research.
Amyloid supramolecular assemblies have found widespread exploitation as ordered nanomaterials in a range of applications from materials science to biotechnology. New strategies are, however, required for understanding and promoting mature fibril formation from simple monomer motifs through easy and scalable processes. Noncovalent interactions are key to forming and holding the amyloid structure together. On the other hand, the halogen bond has never been used purposefully to achieve control over amyloid self-assembly. Here we show that single atom replacement of hydrogen with iodine, a halogen-bond donor, in the human calcitonin-derived amyloidogenic fragment DFNKF results in a super-gelator peptide, which forms a strong and shape-persistent hydrogel at 30-fold lower concentration than the wild-type pentapeptide. This is remarkable for such a modest perturbation in structure. Iodination of aromatic amino acids may thus develop as a general strategy for the design of new hydrogels from unprotected peptides and without using organic solvents.
A novel bis-pyrene tweezer anchored on a rigid polyoxometalate scaffold fosters a unique interplay of hydrophobic and electrostatic supramolecular interactions, to shape carbon nanostructures (CNSs)-based extended architectures.
A Langmuir film of bis(zinc octaethylporphyrin) (ZnPP) was characterised at the air–water interface and its syn–anti conformation switching induced upon addition of aromatic amines was studied by infrared and UV–vis reflection spectroscopic methods. The highly specific interaction of ZnPP with aromatic amines was maintained even after the floating film was transferred onto solid supports by the Langmuir– Schaefer (LS) technique, enabling us to selectively sense aromatic amines at concentrations as low as 20 ppb. Furthermore, LS ZnPP active layer selectivity was evaluated in the presence of aliphatic amines.
New perylene monoimides, diimides and bis-diimides have been designed and synthetized. A detailed investigation of the synthesis of these compounds has also been performed in order to highlight the crucial factors for obtaining a specific class of molecules. Specifically, the attention has been focused on the synthesis of the intermediate perylene monoimides which are very useful precursors for many molecules difficult to obtain. Furthemore, two synthetic pathways have been developed for obtaining the bis-diimides variously substituted. These final compounds are predicted to mimic the excellent electron acceptor properties of fullerene derivatives and they can be used as building blocks to form 3D semiconducting materials.
During the Middle Ages in Europe, a different post-mortem funerary custom came to be used in order to transport and solemnly dispose of the bodies of high-status individuals. Because of their high degree of mobility, most medieval kings and queens rarely died where they had planned to be buried; thus, they had to be moved to the place of burial. Ancient writings describe some post-mortem funerary practices carried out to facilitate transport, such as boiling or burning of bodies after death. The remains of Henry VII of Luxembourg were analysed in order to determine which post-mortem practices were utilized. A detailed chemical-physical analysis was conducted to highlight the changes in the bone matrix due to post-mortem alteration. Boiling and burning leave different marks in the bone that could be differentiated through the analysis of the inorganic and organic components of the bone. Accordingly, anthropological, X-ray diffraction (XRD), infrared spectroscopy (FT-IR), collagen ratio, and scanning electron microscopy (FE-SEM/EDAX) analysis were performed on two different bone fragments: cranial and tibial shaft. This multidisciplinary approach has enriched scientific understanding of the post-mortem practices to which the skull and tibial shaft of Henry VII were subjected. The results highlight that the tibial shaft was treated under higher temperature respect to the skull. Furthermore, this analysis also shed light on the state of preservation of the bone fragments analysed and has allowed us to initiate more complex molecular analysis, as well as ancient DNA analysis.
Tetrapyrrolic macrocycles are largely used in the sensing of vari-ous analytes both in liquid and in gaseous phase, but thestrong electronic delocalization of this class of molecules makesdifficult to realize a selective active layer. To overcome thisproblem, in the present work it is proposed the synthesis of asupramolecular adduct of zinc oxide nanostructure and a free-base tetra- pyridyl substituted porphyrin. The electronic struc-ture of the two organic/inorganic compounds allows to ob-serve a surface-enhanced Raman scattering (SERS) of the por-phyrin vibrational bands. This phenom enon is quenched by thepresence of mercuric and cupric ions according to two differentmechanisms monitored and explained by means of time re-solved fluorescence spectroscopy. It was demonstrated thatother substances in complex matrices, such as the food ex-tracts, do not affect the electronic communication betweenZnO and porphyrin preserving the SERS effect and minimizingthe effect of interfering compounds.
Condividi questo sito sui social