Effettua una ricerca
Guido Raffaele Dell'osso
Ruolo
Professore Associato
Organizzazione
Politecnico di Bari
Dipartimento
Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica
Area Scientifica
Area 08 - Ingegneria civile e Architettura
Settore Scientifico Disciplinare
ICAR/11 - Produzione Edilizia
Settore ERC 1° livello
PE - Physical sciences and engineering
Settore ERC 2° livello
PE8 Products and Processes Engineering: Product design, process design and control, construction methods, civil engineering, energy processes, material engineering
Settore ERC 3° livello
PE8_11 - Sustainable design (for recycling, for environment, eco-design)
Il libro, rivolto ai progettisti edili e agli studenti dei corsi di Ingegneria e Architettura, propone una trattazione sulle possibilità di conferire agli edifici caratteristiche di efficienza energetica mediante sistemi di Building Automation. Nelle prime parti del volume si affronta il tema della Building Automation in generale, fornendo cenni sulle sue potenzialità anche con riguardo alle aree tradizionali della domotica. Si passa, poi, al tema centrale del lavoro, analizzando, in particolare, l'involucro edilizio, gli smart materials e le strategie bioclimatiche e adattive nelle loro relazioni con i sistemi di automazione. La trattazione prosegue con la descrizione di un sistema domotico sperimentale generato dall'attività di ricerca condotta tra Università, Imprese ed Enti di ricerca. Si affronta, quindi, l'Intelligent Building Assessment, analizzando l'approccio nel merito seguito dai principali metodi di valutazione della sostenibilità in ambito internazionale e dalla normativa di settore (UNI EN 15232:2012). Il lavoro si conclude con la presentazione dei risultati dell'applicazione a un caso di studio di sistemi di Building Automation per l'efficienza energetica, riferiti anche agli esiti di valutazioni di Life Cycle Assessment.
This paper attempts to evaluate the positive effects of vegetation with a multi-scale approach: an urban and a building scale. Monitoring the urban heat island in four areas of New York City, we have found an average of 2°C difference of temperatures between the most and the least vegetated areas, ascribable to the substitution of vegetation with man-made building materials. At micro-scale, we have assessed the effect of surface albedo on climate through the use of a climatological model. Then, using the CO 2 equivalents as indicators of the impact on climate, we have compared the surface albedo, and the construction, replacement and use phase of a black, a white and a green roof. By our analyses, we found that both the white and the green roofs are less impactive than the black one; with the thermal resistance, the biological activity of plants and the surface albedo playing a crucial role.
The management of indoor climate control should aim to keep the comfort conditions constant and uniform in time and space, quickly responding to any changes of the boundary conditions and considering at the same time the long-term hygrothermal behaviour of buildings. In the case of passive cooling, the management has a specific degree of difficulty, do to the fact that there are very few components on which it is possible to act for the control. Inside the reading room of the historical building of the Provincial Library "N. Bernardini" in Leece, a geothermal passive cooling system was installed. It is based on the thermal exchanges air-to-ground and blows air into the room through a displacement system. The unique active elements of the system are the fans, required to compensate for the pressure drops. On the basis of appropriate fields monitoring conducted during the exercise of the system, a strategy of activation of the system itself was result, that takes into account the external climate variations, the microclimate parameters, the indoor thermal loads, but also the large volume involved and the thermal inertia of the structure that dumps the effects of peaks in the variation of boundary conditions. Currently the control on the cooling system is achieved through traditional thermostats and hurnidostats, that detect the climate parameters and manage the activation of the fans and of the actuators for opening windows. However, there are already planned future developments that will replace this kind of control with an other one based on "complex-logics", which involves both thermal and moisture fluxes management. This new control system should work on set-points of comfort that are changeable according with the algorithms of adaptive comfort. Exploiting this new system, there will not be a single check of the benchmarks involved in the control of microclimate, but it will be obtained a management of the plant based on the mutual comparison of these parameters. The purpose is to realize a complete management in which each time there is one decisive parameter, that prevails over the others for the activation of the various plant parts; the decisive parameter will change every time according to the present situation, and will be identified by the system on the basis of proper setting entered in beforehand.
Condividi questo sito sui social