Effettua una ricerca
Rocco Addante
Ruolo
Ricercatore
Organizzazione
Università degli Studi di Bari Aldo Moro
Dipartimento
DIPARTIMENTO DI SCIENZE DEL SUOLO,DELLA PIANTA E DEGLI ALIMENTI
Area Scientifica
AREA 07 - Scienze agrarie e veterinarie
Settore Scientifico Disciplinare
AGR/11 - Entomologia Generale e Applicata
Settore ERC 1° livello
Non Disponibile
Settore ERC 2° livello
Non Disponibile
Settore ERC 3° livello
Non Disponibile
In its gregarious phase the locust Dociostaurus maroccanus (Thunberg) (Orthoptera Acrididae) has periodically caused significant yield losses in many Mediterranean and Asian countries, and alarm in the general public. Population outbreaks in recent years have frequently required the application of control measures, based on those that have low environmental impact, which are only possible with a sound knowledge of locust bio-ethology and ecology. Our research was aimed at studying the spatial distribution of D. maroccanus egg pods in two Apulian egg bed areas in southern Italy, thus contributing to the rationalization of control methods. The distribution of D. maroccanus egg pods was investigated using a geostatistical approach. Three sampling designs (called A, B and C), characterized by different mesh and clod sizes, were compared to evaluate their effectiveness and affordability. In both egg bed areas, the variogram models were asymptotic with a small nugget effect, and indicated an aggregated distribution of egg pods. Contour maps showed that design A, based on a larger mesh and clod size, was characterized by few hot spots and an extended zone of “low density” egg pods, while design B, involving a smaller mesh and clod size, showed a more structured distribution, with various hot spots alternating with zero level zones. Finally, design C, based on a larger mesh size and smaller clods, showed a single extended hot spot surrounded by a large area without egg pods. Moreover, because of the larger amount of soil to be examined, design A was about 2.6- and 10.9-fold more time consuming than designs B and C, respectively. Our data showed that sampling designs providing smaller and denser samples should be preferred over designs with fewer and larger samples when information on both the distribution and density of egg pods is needed.
Fructophilic lactic acid bacteria (FLAB) are strongly associated to the gastrointestinal tract (GIT) of Apis mellifera L. worker bees due to the consumption of fructose as a major carbohydrate. Seventy-seven presumptive lactic acid bacteria (LAB) were isolated from GIT of healthy A. mellifera L. adults, which were collected from 5 different geographical locations of Apulia region (Italy). Almost all the isolates showed fructophilic tendencies, which were identified as Lactobacillus kunkeei (69%) or Fructobacillus fructosus (31%). A high-throughput phenotypic microarray, targeting 190 carbon sources, was used to determine that 83 compounds were differentially consumed. Phenotyping grouped the strains into two clusters, reflecting growth performance. The utilization of phenolic acids, such as p-coumaric, caffeic, syringic or gallic acids, as electron acceptors was investigated in fructose based medium. Almost all FLAB strains showed tolerance to high phenolic acid concentrations. p-Coumaric acid and caffeic acid were consumed by all FLAB strains through reductases or decarboxylases. Syringic and gallic acids were partially metabolized. The data collected suggest that FLAB require external electron acceptors to regenerate NADH. The use of phenolic acids as external electron acceptors by 4 FLAB, showing the highest phenolic acid reductase activity, was investigated in glucose based medium supplemented with p-coumaric acid. Metabolic responses observed through phenotypic microarray suggested that FLAB may use p-coumaric acid as external electron acceptor, enhancing glucose dissimilation but less efficiently than other external acceptors such as fructose or pyruvic acid.
Condividi questo sito sui social