Effettua una ricerca
Kyriaki Manoli
Ruolo
Ricercatore a tempo determinato - tipo A
Organizzazione
Università degli Studi di Bari Aldo Moro
Dipartimento
DIPARTIMENTO DI CHIMICA
Area Scientifica
AREA 03 - Scienze chimiche
Settore Scientifico Disciplinare
CHIM/01 - Chimica Analitica
Settore ERC 1° livello
Non Disponibile
Settore ERC 2° livello
Non Disponibile
Settore ERC 3° livello
Non Disponibile
A jellified alginate based capsule serves as biocompatible and biodegradable electrolyte system to gate an organic field-effect transistor fabricated on a flexible substrate. Such a system allows operating thiophene based polymer transistors below 0.5 V through an electrical double layer formed across an ion-permeable polymeric electrolyte. Moreover, biological macro-molecules such as glucose-oxidase and streptavidin can enter into the gating capsules that serve also as delivery system. An enzymatic bio-reaction is shown to take place in the capsule and preliminary results on the measurement of the electronic responses promise for low-cost, low-power, flexible electronic bio-sensing applications using capsule-gated organic field-effect transistors
Among the metal oxide semiconductors, ZnO has been widely investigated as a channel in thin film transistors (TFTs) due to its excellent electrical properties, optical transparency and simple fabrication via solution processed techniques. Herein, we are reporting a solution processable ZnO based thin-film transistor, gated through a liquid electrolyte having an ionic strength comparable to that of a physiological fluid. The surface morphology and chemical composition of the ZnO films upon exposure to water and phosphate buffer solution (PBS), are discussed in terms of operation stability and electrical performance of the ZnO TFT devices. Improved device characteristics upon exposure to PBS are associated with the enhancement of the oxygen vacancies in ZnO lattice, possibly due to Na+ doping. Moreover, dissolution kinetics of ZnO thin film in liquid electrolyte opens to possible applicability of these devices as active element in “transient” implantable systems.
Alkyl-methylimidazolium based ionic liquids are proposed as gating electrolytes in field-effect transistors and the ionic properties are seen to influence the devices electrical performance. Specifically, over a selection of different cations and anions correlations have been established between the ion-pairing occurring in the pure ionic-liquid and the intensity of the current circulating in the transistor channel in the on state. Ion-pairing was determined by means of pulse-gradient-spin-echo (PGSE) NMR experiments. Moreover, the effect of the ions chemical structure and hydrophobicity on the off-current and on the field-effect mobility as well as on the threshold voltage, are discussed. The occurrence of hysteresis in the current–voltage transfer curves is evaluated and associated to the electrolyte molar conductivity and the ions self-diffusion coefficients. The gained understanding allows to optimize the system reaching better device performance level. Moreover, thanks to the well-known bio-compatibility of this class of ionic liquids, application in electrolyte gated biosensors can be foreseen.
A polyanionic proton conductor, named poly(4-styrenesulfonic acid) (PSSH), was used to gate an Organic Thin-Film Transistor (OFET) based on p-type poly(2,5-bis(3-tetradecylthiophen-2-yl)thienol [3,2-b]thiophene) (pBTTT-C14) organic semiconductor (OSC). Different device configurations were evaluated and a bottom gate – top contact (BGTC) device was investigated as transducer for gas sensing measurements. The sensors׳ performance in terms of stability, repeatability and reproducibility were evaluated when the device was exposed to different concentrations of 1-butanol. Comparison with a conventionally gated OFET (SiO2 dielectric instead of PSSH) was also performed.
The functioning principles of electronic sensors based on organic semiconductor field-effect transistors (OFETs) are presented. The focus is on biological sensors but also chemical ones are reviewed to address general features. The field-induced electronic transport and the chemical and biological interactions for the sensing, each occurring at the relevant functional interface, are separately introduced. Once these key learning points have been acquired, the combined picture for the FET electronic sensing is proposed. The perspective use of such devices in point-of-care is introduced, after some basics on analytical biosensing systems are provided as well. This tutorial review includes also a necessary overview of the OFET sensing structures, but the focus will be on electronic rather than electrochemical detection. The differences among structures are highlighted along with the implications on the performance level in terms of key analytical figure of merits such as: repeatability, sensitivity and selectivity
We report on the use of a polyanionic proton conductor, poly(acrylic acid), to gate a poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene]-based organic field-effect transistor (OFET). A planar configuration of the OFET is evaluated, and the electrical performance and implementation on a flexible substrate are discussed.
Organic field-effect transistors including a functional bio-recognition interlayer, sandwiched between the dielectric and the organic semiconductor layers, have been recently proposed as ultrasensitive label-free biosensors capable to detect target molecule in the low pM concentration range. The morphology and the structure of the stacked bilayer formed by the protein bio-interlayer and the overlying organic semiconductor is here investigated for different protein deposition methods. X-ray scattering techniques and scanning electron microscopy allow to gather key relevant information on the interface structure and to assess target analyte molecules capability to percolate through the semiconducting layer reaching the protein deposit lying underneath. Correlations between the structural and morphological data and the device analytical performances are established allowing to gather relevant details on the sensing mechanism and further improving sensor performances, in particular in terms of sensitivity and selectivity.
A simple and time-saving wet method to endow the surface of organic semiconductor films with carboxyl functional groups is presented. A thin layer of poly(acrylic acid) (pAA) is spin-coated directly on the electronic channel of an electrolyte-gated organic FET (EGOFET) device and cross-linked by UV exposure without the need for any photo-initiator. The carboxyl functionalities are used to anchor phospholipid bilayers through the reaction with the amino-groups of phosphatidyl-ethanolamine (PE). By loading the membranes with phospholipids carrying specific functionalities, such a platform can be easily implemented with recognition elements. Here the case of biotinylated phospholipids that allow selective streptavidin electronic detection is described. The surface morphology and chemical composition are monitored using SEM and XPS, respectively, during the whole process of bio-functionalization. The electronic and sensing performance level of the EGOFET biosensing platform is also evaluated. Selective analyte (streptavidin) detection in the low pM range is achieved, this being orders of magnitude lower than the performance level obtained by the well assessed surface plasmon resonance assay reaching the nM level, at most.
Si tratta di un sensore a transistore, cos’ come del suo array, capace di rivelare, in modo affidabile, selettivo e label-free fino ad una singola molecola di DNA così come di anticorpi e peptidi. noltre il semiconduttore usato è un composito nanostrutturato a base di un polimero semiconduttore, facile da preparare, scalabile ed economico, è anche particolarmente stabile quando impiegato in diretto contatto con l’acqua.
Condividi questo sito sui social