Effettua una ricerca
Yungang Lu
Ruolo
Professore Ordinario
Organizzazione
Università degli Studi di Bari Aldo Moro
Dipartimento
DIPARTIMENTO DI MATEMATICA
Area Scientifica
AREA 01 - Scienze matematiche e informatiche
Settore Scientifico Disciplinare
MAT/06 - Probabilità e Statistica Matematica
Settore ERC 1° livello
Non Disponibile
Settore ERC 2° livello
Non Disponibile
Settore ERC 3° livello
Non Disponibile
We investigate the spectrum for partial sums of m position (or gaussian) operators on monotone Fock space based on $ell^2(N)$. In the basic case of the rst consecutive operators, we prove it coincides with the support of the vacuum distribution. Thus, the right endpoint of the support gives their norm. In the general case, we get the last property for norm still holds. As the single position operator has the vacuum symmetric Bernoulli law, and the whole of them is a monotone independent family of random variables, the vacuum distribution for partial sums of n operators can be seen as the monotone binomial with n trials. It is a discrete measure supported on a nite set, and we exhibit recurrence formulas to compute its atoms and probability function as well. Moreover, lower and upper bounds for the right endpoints of the supports are given.
Condividi questo sito sui social