Vacuum distribution, norm and spectral properties for sums of monotone position operators
Abstract
We investigate the spectrum for partial sums of m position (or gaussian) operators on monotone Fock space based on $ell^2(N)$. In the basic case of the rst consecutive operators, we prove it coincides with the support of the vacuum distribution. Thus, the right endpoint of the support gives their norm. In the general case, we get the last property for norm still holds. As the single position operator has the vacuum symmetric Bernoulli law, and the whole of them is a monotone independent family of random variables, the vacuum distribution for partial sums of n operators can be seen as the monotone binomial with n trials. It is a discrete measure supported on a nite set, and we exhibit recurrence formulas to compute its atoms and probability function as well. Moreover, lower and upper bounds for the right endpoints of the supports are given.
Autore Pugliese
Tutti gli autori
-
CRISMALE V.;LU Y.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2018
ISSN
Non Disponibile
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social