Vacuum distribution, norm and spectral properties for sums of monotone position operators

Abstract

We investigate the spectrum for partial sums of m position (or gaussian) operators on monotone Fock space based on $ell^2(N)$. In the basic case of the rst consecutive operators, we prove it coincides with the support of the vacuum distribution. Thus, the right endpoint of the support gives their norm. In the general case, we get the last property for norm still holds. As the single position operator has the vacuum symmetric Bernoulli law, and the whole of them is a monotone independent family of random variables, the vacuum distribution for partial sums of n operators can be seen as the monotone binomial with n trials. It is a discrete measure supported on a nite set, and we exhibit recurrence formulas to compute its atoms and probability function as well. Moreover, lower and upper bounds for the right endpoints of the supports are given.


Tutti gli autori

  • CRISMALE V.;LU Y.

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2018

ISSN

Non Disponibile

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

Non Disponibile

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile