Effettua una ricerca
Claudia Cafarchia
Ruolo
Professore Associato
Organizzazione
Università degli Studi di Bari Aldo Moro
Dipartimento
DIPARTIMENTO DI MEDICINA VETERINARIA
Area Scientifica
AREA 07 - Scienze agrarie e veterinarie
Settore Scientifico Disciplinare
VET/06 - Parassitologia e Malattie Parassitarie degli Animali
Settore ERC 1° livello
Non Disponibile
Settore ERC 2° livello
Non Disponibile
Settore ERC 3° livello
Non Disponibile
Aspergillus spp. may induce equine respiratory infections such as fungal pneumonia, guttural pouch mycosis, and systemic infection in immunocompromised individuals. This study describes a case of probable respiratory aspergillosis in a horse presenting clinical signs of the upper airway disease different from those previously reported. Nasopharyngeal swabs and guttural pouch centesis were performed, and Aspergillus flavus was isolated and identified. Following 30 days of pharmaceutical treatment with itraconazole, clinical signs resolved. Results suggested that aspergillosis should be included in the differential diagnosis of upper airway infections, guttural pouch centesis may be useful to make a correct diagnosis, and itraconazole is efficacious in the treatment of A flavus infection.
Abstract Background: Proteins from the ABC family (ATP-binding cassette) represent the largest known group of efflux pumps, responsible for transporting specific molecules across lipid membranes in both prokaryotic and eukaryotic organisms. In arthropods they have been shown to play a role in insecticide defense/resistance. The presence of ABC transporters and their possible association with insecticide transport have not yet been investigated in the mosquito Anopheles stephensi, the major vector of human malaria in the Middle East and South Asian regions. Here we investigated the presence and role of ABCs in transport of permethrin insecticide in a susceptible strain of this mosquito species. Methods: To identify ABC transporter genes we obtained a transcriptome from untreated larvae of An. stephensi and then compared it with the annotated transcriptome of Anopheles gambiae. To analyse the association between ABC transporters and permethrin we conducted bioassays with permethrin alone and in combination with an ABC inhibitor, and then we investigated expression profiles of the identified genes in larvae exposed to permethrin. Results: Bioassays showed an increased mortality of mosquitoes when permethrin was used in combination with the ABC-transporter inhibitor. Genes for ABC transporters were detected in the transcriptome, and five were selected (AnstABCB2, AnstABCB3, AnstABCB4, AnstABCmember6 and AnstABCG4). An increased expression in one of them (AnstABCG4) was observed in larvae exposed to the LD50 dose of permethrin. Contrary to what was found in other insect species, no up-regulation was observed in the AnstABCB genes. Conclusions: Our results show for the first time the involvement of ABC transporters in larval defense against permethrin in An. stephensi and, more in general, confirm the role of ABC transporters in insecticide defense. The differences observed with previous studies highlight the need of further research as, despite the growing number of studies on ABC transporters in insects, the heterogeneity of the results available at present does not allow us to infer general trends in ABC transporter-insecticide interactions.
Members of the genus Malassezia are lypophilic and/or lipid-dependent, unipolar budding yeasts that can become pathogenic under the influence of particular predisposing factors (e.g., changes in the cutaneous microenvironment and/or alterations in host defences). This genus comprises at least 14 species, which have been identified traditionally based on their morphology and biochemical features. However, phenetic characteristics often do not allow the identification or delineation of closely related Malassezia spp., such that molecular tools need to be used to assist in fundamental studies of the epidemiology and ecology of Malassezia as well as aspects of the pathogenesis and disease caused by members of this genus. This article briefly reviews the morphological and biochemical methods commonly used for the identification of Malassezia as well as DNA technological methods that have been established for the specific identification of members of this genus and the diagnosis of their infections. New avenues for the development of improved molecular-diagnostic methods to overcome diagnostic limitations and to underpin fundamental investigations of this interesting group of yeasts are proposed.
The few studies attempting to specifically characterize dermatophytes from hair samples of dogs and cats using PCR-based methodology relied on sequence-based analysis of selected genetic markers. The aim of the present investigation was to establish and evaluate a PCR-based approach employing genetic markers of nuclear DNA for the specific detection of dermatophytes on such specimens. Using 183 hair samples, we directly compared the test results of our one-step and nested-PCR assays with those based on conventional microscopy and in vitro culture techniques (using the latter as the reference method). The one step-PCR was highly accurate (AUC > 90) for the testing of samples from dogs, but only moderately accurate (AUC = 78.6) for cats. A nested-PCR was accurate (AUC = 93.6) for samples from cats, and achieved higher specificity (94.1 and 94.4%) and sensitivity (100 and 94.9%) for samples from dogs and cats, respectively. In addition, the nested-PCR allowed the differentiation of Microsporum canis from Trichophyton interdigitale (zoophilic) and geophilic dermatophytes (i.e., Microsporum gypseum or Trichophyton terrestre), which was not possible using the one step-assay. The PCRs evaluated here provide practical tools for diagnostic applications to support clinicians in initiating prompt and targeted chemotherapy of dermatophytoses.
Antifungal resistance has been associated with biofilm formation in many microorganisms, but not yet in Malassezia pachydermatis. This saprophytic yeast can cause otitis and dermatitis in dogs and has emerged as an important human pathogen, responsible for systemic infections in neonates in intensive care units. This study aims to evaluate the in vitro antifungal susceptibility of M. pachydermatis strains, in both their planktonic and sessile forms, to fluconazole, miconazole, ketoconazole, itraconazole, posaconazole, terbinafine and voriconazole using the XTT assay and Clinical and Laboratory Standards Institute (CLSI) microdilution method. The minimum inhibitory concentration (MIC) values recorded for each drug were significantly higher for sessile cells relative to planktonic cells to the extent that ≥ 90% of M. pachydermatis strains in their sessile form were classified as resistant to all antifungal agents tested. Data suggest that M. pachydermatis biofilm formation is associated with antifungal resistance, paving the way towards investigating drug resistance mechanisms in Malassezia spp.
The microdilution antifungal method (CLSI BMD, M27-A3) was used for testing the antifungal susceptibility of Malassezia species. However, optimal broth media that allow sufficient growth of M. pachydermatitis and produce reliable and reproducible MICs using the CLSI BMD protocol are yet to be established. In this study, the susceptibility of M. pachydermatis isolates to ketoconazole (KTZ), itraconazole (ITZ) and fluconazole (FLZ) was evaluated in vitro by the CLSI BMD test using Christensen's urea broth (CUB) and mRPMI 1640 containing lipid supplementation, Sabouraud dextrose broth with 1% tween 80 (SDB), and Dixon broth (DXB). A FLZ-resistant M. pachydermatis was generated in vitro and tested under the same conditions. A good growth of M. pachydermatis incubated for 48 and 72h, respectively, was observed in CUB, SDB and DXB and not in mRPMI 1640 (p<0.001). No statistically significant differences were detected between the MIC values registered after 48h and 72h incubation. ITZ displayed lower MIC values than KTZ and FLZ regardless of the media employed. A large number of FLZ-resistant Malassezia strains (86.6%) was observed using DXB. A MIC>64mg/L was observed only when the FLZ-resistant M. pachydermatis isolate was tested in SDB. Based on the results obtained herein, culture in SDB, stock inoculum suspensions of 1-5×10(6)CFU/ml, and an incubation time of 48h are proposed as optimal conditions for the evaluation of the in vitro antifungal susceptibility of M. pachydermatis using a modified CLSI BMD protocol.
This study aims to determine the minimal inhibitory concentration (MIC) distribution and the epidemiological cut-off values (ECVs) of Malassezia pachydermatis and Malassezia furfur isolates for fluconazole (FLZ), itraconazole (ITZ), posaconazole (POS), and voriconazole (VOR). A total of 62 M. pachydermatis strains from dogs with dermatitis and 78 M. furfur strains from humans with bloodstream infections (BSI) were tested by a modified broth microdilution Clinical and Laboratory Standards Institute (CLSI) method. ITZ and POS displayed lower MICs than VOR and FLZ, regardless of the Malassezia species. The MIC data for azoles of M. pachydermatis were four two-fold dilutions lower than those of M. furfur. Based on the ECVs, about 94% of Malassezia strains might be categorized within susceptible population for all azoles, except for FLZ, and azole cross-resistance was detected in association with FLZ in M. pachydermatis but not in M. furfur. The study proposes, for the first time, tentative azole ECVs for M. pachydermatis and M. furfur for monitoring the emergence of isolates with decreased susceptibilities and shows that the azole MIC distribution varied according to the Malassezia species tested, thus suggesting the usefulness of determining the susceptibility profile for effective treatment of each species.
Yeasts of the genus Malassezia are commensals of the normal skin microbial flora of humans and animals. These yeasts may become pathogenic under certain circumstances and their pathogenic role may be related to host immune system as well to yeast virulence factors (e.g., phospholipase production and biofilm formation). This study aims to evaluate the in vitro ability of M. pachydermatis strains to produce biofilm, and its relationship with phospholipase activity and the genetic make-up of isolates from lesioned (n=32) and healthy (n=30) dog skin. The production of biofilm was determined by crystal violet staining and scanning electronic microscopy (SEM). Biofilm was produced by almost all M. pachydermatis isolates (95.2%) from dogs with and without skin lesions at variable level and different structure. At the SEM, biofilm matrix presented adhering blastoconidia clustered in multi- or monolayer structures with variable quantity of extracellular production. Of the three genotypes detected, genotype B showed the lowest ability to produce biofilm. Of the 59 isolates producing biofilm, 33 (55.9%) produced phospholipase, with a higher biofilm formation (p<0.05) in strains collected from animals with skin lesions. It is here suggested that phospholipase production might act in synergism with the biofilm formation by inducing or exacerbating skin lesions in dogs. The results provide evidences for a better understanding of the interactions between yeasts and host immune system, toward revealing the pathogenicity of M. pachydermatis in animals.
Despite being considered an emerging yeast related to immunocompromised individuals, severe infections by Malassezia furfur have not been evaluated. During a one-year survey on yeasts fungemia, 290 neonatal and 17 pediatric patients with intravascular catheters, lipid parenteral nutrition, prolonged ward stay, and surgery were enrolled. In addition, the origin of the infection was investigated by swabbing hand skin of patients, parents, and healthcare workers and medical devices. All biological specimens and swabs were cultured on Sabouraud dextrose agar and Dixon agar. The yeasts identification was based on morphological and biochemical features and by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and confirmed by sequencing the internal transcribed spacer of nuclear ribosomal DNA. A higher prevalence of M. furfur (2.1%) over Candida spp. (1.4%) caused bloodstream infections (BSIs). Twelve fungemia episodes were recorded: 2 by M. furfur in a pediatric ward and 10 in a neonatal intensive care unit (6 caused by M. furfur and 4 by Candida spp.). M. furfur was also isolated from the skin of all patients with BSIs, from the hand skin of a parent, and from an incubator surface and sheet. Patients with Candida spp. and M. furfur BSIs were successfully treated with intravenous liposomal Amphotericin B. These findings highlight the need for a more accurate etiological diagnosis in high-risk patients by adding lipid-supplemented culture media for Malassezia in the current mycological routine as the clinical features, patient management, and outcomes in both Candida and Malassezia fungemia do not differ.
The occurrence of Malassezia spp. bloodstream infections (BSIs) in neonatal intensive care unit was evaluated by using pediatric Isolator, BacT/Alert systems and central venous catheter (CVC) culture. The efficacy of BacT/Alert system in detecting Malassezia was assessed by conventional procedures, culturing 1 ml of bottle content before incubation and by studying the survival of Malassezia spp. strains in BacT/Alert bottles. Of the 492 neonates enrolled, blood was collected by pediatric Isolator (290 patients; group I) or by BacT/Alert bottles (202 patients; group II). The survival of Malassezia furfur and Malassezia pachydermatis in BacT/Alert bottles was evaluated by culturing the inoculum suspension (from 106 to 10 colony-forming units, cfu/ml) and assessing the cfu/ml for 15 days. In total, 15 Malassezia BSIs were detected, of which six (2.1%) from both blood and CVC culture in Dixon agar (DixA) in patients belong to group I (blood collected by paediatric Isolator tube) and nine (4.4%) only from CVC culture in DixA in patients of group II (blood collected by BacT/Alert bottle). Only one patient (0.5%) from group II scored positive for M. furfur also by culturing in DixA 1 ml blood content of BacT/Alert bottle before incubation in BacT/Alert system.M. furfur population size in BacT/Alert bottles decreased during the incubation time, whereas that of M. pachydermatis increased. The BacT/Alert system detected M. pachydermatis even at very low concentration (i.e., 10 cfu/ml) but not any positive blood culture for M. furfur. For a correct diagnosis of Malassezia furfur BSI, the blood should be culture in lipid-enriched fungal medium, and the BacT/Alert system implemented by adding lipid substrates to increase the method sensibility. Finally, CVC cultures on lipid-supplemented media may be proposed as a routine procedure to diagnose the Malassezia fungemia.
The small amount of data regarding the antifungal activity of Dittrichia viscosa (L.) Greuter against dermatophytes, Malassezia spp. and Aspergillus spp., associated with the few comparative studies on the antimicrobial activity of methanolic, ethanolic, and butanolic extracts underpins the study herein presented. The total condensed tannin (TCT), phenol (TPC), flavonoid (TFC), and caffeoylquinic acid (CQC) content of methanol, butanol, and ethanol (80% and 100%) extracts of D. viscosa were assessed and their bactericidal and fungicidal activities were evaluated. The antibacterial, anti-Candida and anti-Malassezia activities were evaluated by using the disk diffusion method, whereas the anti-Microsporum canis and anti-Aspergillus fumigatus activities were assessed by studying the toxicity effect of the extracts on vegetative growth, sporulation and germination. The methanolic extract contained the highest TPC and CQC content. It contains several phytochemicals mainly caffeoylquinic acid derivatives as determined by liquid chromatography with photodiode array and electrospray ionisation mass spectrometric detection (LC/PDA/ESI-MS) analysis. All extracts showed an excellent inhibitory effect against bacteria and Candida spp., whereas methanolic extract exhibited the highest antifungal activities against Malassezia spp., M. canis and A. fumigatus strains. The results clearly showed that all extracts, in particular the methanolic extract, might be excellent antimicrobial drugs for treating infections that are life threatening (i.e., Malassezia) or infections that require mandatory treatments (i.e., M. canis or A. fumigatus).
Cryptococcosis is a fungal disease acquired from the environment, for which animals may serve as sentinels for human exposure. The occurrence of Cryptococcus spp. in the respiratory tract of 125 squirrels, Callosciurus finlaysonii, trapped in Southern Italy, was assessed. Upon examination of nasal swabs and lung tissue from each individual, a total of 13 (10.4%) animals scored positive for yeasts, 7 for Cryptococcus neoformans (C.n.) (5.6%) and 6 for other yeasts (4.8%). C.n. was isolated from the nostrils and lungs, with a high population size in nostrils. Two C.n. molecular types, VNI and VNIV, were identified, with C.n. var. grubii VNI the most prevalent. Phylogenetic analyses of ITS+ and URA5 sequences revealed that C.n. isolates were genetically similar to isolates from a range of geographical areas and hosts. Results suggest that C.n. can colonize or infect the respiratory tract of C. finlaysonii. The high occurrence and level of colonization of nasal cavities might be an indicator of environmental exposure to high levels of airborne microorganism. The close phylogenetic relationship of C.n. strains from squirrels with those from human and other animal hosts suggests a potential role for these animals as “sentinels” for human exposure.
Infections caused by Malassezia yeasts are most likely underdiagnosed, because fatty acid supplementation is needed for growth. Rapid identification of Malassezia species is essential for appropriate treatment of Malassezia-related skin infections, fungaemia and nosocomial outbreaks in neonates, children and adults and can be life-saving for those patients. Ma-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been reported to be a rapid and reliable diagnostic tool to identify clinically important yeasts, but so far no data have been reported on identification of Malassezia isolates with this technique. OBJECTIVES: To create an extensive database of main mass spectra (MSPs) that will allow quick identification of Malassezia species by MALDI-TOF MS. METHODS: An in-house library of 113 MSPs was created from 48 reference strains from the CBS-KNAW yeast collection. The in-house library was challenged with two test sets of Malassezia strains, namely 165 reference strains from the CBS collection and 338 isolates collected in Greece, Italy, Sweden and Thailand. RESULTS: MALDI-TOF MS allowed correct identification of all 14 Malassezia spp. MALDI-TOF MS results were concordant with those of sequence analyses of the internal transcribed spacers (ITS1/ITS2) and the D1/D2 domains of the large subunit of the ribosomal DNA. CONCLUSIONS: Implementation of the MALDI-TOF MS system as a routine identification tool will contribute to correct identification of Malassezia yeasts with minimal effort and in a short turnaround time, which is especially important for the rapid identification of Malassezia in skin diseases and nosocomial outbreaks.
Data on the occurrence and epidemiology of Aspergillus spp. in laying hens farms are scant. With the aims of determining levels of airborne contamination in laying hen farms and evaluating the potential risk of infection for workers and animals, 57 air samples from 19 sheds (Group I), 69 from faeces (Group II), 19 from poultry feedstuffs (Group III) and 60 from three anatomical sites (i.e. nostrils, pharynx, ears) of 20 farm workers (Group IV) were cultured. The Aspergillus spp. prevalence in samples ranged from 31.6% (Group III) to 55.5% (Group IV), whereas the highest conidia concentration was retrieved in Group II (1.2 × 10(4) c.f.u. g(-1)) and in Group III (1.9 × 10(3) c.f.u. g(-1)). The mean concentration of airborne Aspergillus spp. conidia was 70 c.f.u. m(-3) with Aspergillus fumigatus (27.3%) being the most frequently detected species, followed by Aspergillus flavus (6.3%). These Aspergillus spp. were also isolated from human nostrils (40%) and ears (35%) (P<0.05) (Group IV). No clinical aspergillosis was diagnosed in hens. The results demonstrate a relationship between the environmental contamination in hen farms and presence of Aspergillus spp. on animals and humans. Even if the concentration of airborne Aspergillus spp. conidia (i.e. 70 c.f.u. m(-3)) herein detected does not trigger clinical disease in hens, it causes human colonization. Correct management of hen farms is necessary to control environmental contamination by Aspergillus spp., and could lead to a significant reduction of animal and human colonization.
Microsporum canis and Trichophyton mentagrophytes are zoophilic dermatophytes which can cause skin infections in animals and humans. The clinical expression of this infection strongly varies depending on host, fungal species as well as enzyme production. No comparative studies are available on the enzymatic activities of M. canis and T. mentagrophytes isolated from breeding rabbits. Thus, the aim of this work was to assess the capability of M. canis and T. mentagrophytes isolated from rabbits both with and without lesions in producing different enzymes. The relationship of dermatophyte enzymatic activities and presence/absence of skin lesions has also been investigated. A total of 260 isolates of T. mentagrophytes and 25 isolates of M. canis sampled both from healthy and lesioned skin of rabbits, as well as from air samples of positive farms were examined. The results showed that T. mentagrophytes and M. canis from rabbits produce different enzymes. However, only elastase and gelatinase were linked to the appearance of lesions in T. mentagrophytes infections, whereas lipase in those by M. canis.
Malassezia spp. may act as opportunistic skin pathogens in humans and animals. Malassezia pachydermatis proliferation and phospholipase production may play a pathogenic role in the occurrence of skin lesions in dogs. This study investigates the presence of mu-opioid receptor (MOR) in M. pachydermatis strains isolated from healthy dogs and dogs with skin lesions and its effects on phospholipase activity (p.a.). P.a. of 64 M. pachydermatis isolates was evaluated using different concentrations of naloxone (Nx), a MOR antagonist. Isolates were divided into Group A (i.e., 40 isolates from 26 dogs with dermatitis) and Group B (i.e., 24 isolates from 12 healthy dogs). The MOR expression was analyzed by Western blot and immunofluorescence. A statistically higher p.a. than that of the controls was found with isolates in Group A at a Nx concentration of 10(-6) M (P<0.05). No isolate in Group B displayed p.a. in either control samples or in the presence of any Nx concentration. Immunoblotting revealed two positive MOR immunoreactive bands of approximately 65 and 98 kDa. MOR expression and localization was also demonstrated by immunofluorescence in isolates from Groups A and B. This study provides the first evidence of MOR expression on M. pachydermatis cell membranes pointing to its possible role in modulating p.a. production in isolates from dogs with skin lesions
Among diseases of horses caused by fungi (=mycoses), dermatophytosis, cryptococcosis and aspergillosis are of particular concern, due their worldwide diffusion and, for some of them, zoonotic potential. Conversely, other mycoses such as subcutaneous (i.e., pythiosis and mycetoma) or deep mycoses (i.e., blastomycosis and coccidioidomycosis) are rare, and/or limited to restricted geographical areas. Generally, subcutaneous and deep mycoses are chronic and progressive diseases; clinical signs include extensive, painful lesions (not pathognomonic), which resemble to other microbial infections. In all cases, early diagnosis is crucial in order to achieve a favorable prognosis. Knowledge of the epidemiology, clinical signs, and diagnosis of fungal diseases is essential for the establishment of effective therapeutic strategies. This article reviews the clinical manifestations, diagnosis and therapeutic protocols of equine fungal infections as a support to early diagnosis and application of targeted therapeutic and control strategies.
Little detailed information is available on the association of Malassezia pachydermatis genotypes and the extent of skin damage that they cause. In the present study, isolates of M. pachydermatis, recovered from the skin of healthy dogs and dogs with dermatitis in Brazil, were characterized on the basis of partial sequencing of the large subunit (LSU), first internal transcribed spacer (ITS-1) and chitin synthase 2 gene (chs-2). The determination of phospholipase production was also included in the investigations. The severity of lesions and hyperpigmentation of dogs with skin disease were evaluated. For each locus, two main sequence types were designated as genotypes A and C. Two other minor sequence types (A2(I)-C2(I)) were also recorded and defined for the ITS-1. Genotype A isolates were the most prevalent, being recovered from healthy and diseased animals. No significant difference was detected among genotypes or ITS-1 sequence types and grades of skin damage or hyperpigmentation in the dogs with skin lesions. The number of M. pachydermatis isolates that produced phospholipase was statistically higher for diseased dogs than for strains found in healthy animals. The present study reveals that multiple genetic variants of M. pachydermatis occur in dogs and that the distribution patterns of particular genotypes on the skin of dogs in Brazil might be related to environmental and ecological factors which maintain distinctive genotype assemblages in specific geographical areas.
Fungi of the genus Geotrichum are commonly found in the environment and, in some circumstances, they may cause diseases in humans and animals. Although these fungi have been isolated from skin lesions of some animal species, their pathogenic role in horses remains uncertain. With the aim to investigate the role of Geotrichum candidum as etiological agent of dermatomycoses, a retrospective study of 64 horses presenting skin lesions and suspected to have fungal infections was carried out. For each animal, anamnestic data were recorded and fungal culture were performed using hair. Out of 64 cases, 18 (28.1%) were positive for G. candidum and only two (3.1%) for dermatophytes (i.e., one for Microsporum equinum and the other for Microsporum canis). Alopecia, desquamation, and pruritus localized mainly on head and neck were frequently observed in G. candidum infected animals. Most of G. candidum infections were recorded during spring (44.4%). Out of the 18 animals presenting G. candidum infections, eight were treated using a disinfectant with antifungal properties. After one month of treatment, the clinical lesions were healed and fungal cultures resulted negative. The high prevalence of G. candidum in skin lesions of horses and the clinical recover following antifungal treatment indicated that these yeast-like fungi might play a role as etiological agents of horse cutaneous mycoses.
Although guidelines for the treatment of Malassezia furfur fungemia are not yet defined, clinical data suggest that amphotericin B (AmB) is effective for treating systemic infections. In the absence of clinical breakpoints for Malassezia yeasts, epidemiological cut-off values (ECVs) are useful to discriminate between isolates with and without drug resistance. This study aimed to compare the distribution of minimal inhibitory concentration (MIC) and the ECVs for AmB of both deoxycholate (d-AmB) and liposomal (l-AmB) formulations of M. furfur isolates. The 84 M. furfur strains analyzed, which included 56 from blood, sterile sites and catheters, and 28 from skin, were isolated from patients with bloodstream infections. MICs were determined by the modified broth microdilution method of the Clinical and Laboratory Standards Institute (CLSI). The l-AmB MIC and the ECVs were two-fold lower than those of d-AmB and a lower l-AmB mean MIC value was found for blood isolates than from skin. The ECVs for l-AmB and d-AmB were 8 mg/l and 32 mg/l, respectively. Three strains (3.6%) showed l-AmB MIC higher than ECV (MIC > 8mg/l) of which two were isolated from the catheter tip of patients treated with micafugin, l-Amb and fluconazole, and one from skin. The results showed that the l-AmB might be employed for assessing the in vitro antifungal susceptibility of M. furfur by a modified CLSI protocol and that ECVs might be useful for detecting the emergence of resistance.
In order to overcome the limitations inherent in current pharmacological treatments for Malassezia pachydermatis, the cause of otitis externa in dogs, the efficacy of a killer decapeptide (KP) was evaluated in vitro and in vivo. Sixteen dogs with naturally occurring M. pachydermatis otitis externa were enrolled, and the in vitro fungicidal activity of KP was evaluated using yeasts recovered from these animals. The therapeutic activity was evaluated in four groups of four animals each. The dogs were topically treated with KP (150 μl, 2 mg/ml) three times per week (group A) or every day (group B), treated with a scramble peptide every day (group C), or left untreated (group D). Assessment of clinical signs (pruritus, erythema, and lichenification and/or hyperpigmentation), expressed as mean of the total clinical index score (mTCIS), the population size of M. pachydermatis at the cytological examination (mean number of yeast cells at 40× magnification [mYC]), and culture testing (mean number of log10 CFU/swab [mCFU]), were conducted daily from the first day of treatment (T0) until two consecutive negative cultures (mCFU ≤ 2). KP showed an in vitro fungicidal effect against M. pachydermatis isolates, with an MFC90 value of 1 μg/ml. The mTCIS, mYC and mCFU were negative only in animals in group B after T8. Daily administration of KP for 8 days was safe and effective in controlling both clinical signs and the population size of M. pachydermatis causing otitis externa, thus offering an alternative to the currently available therapeutic or prophylactic protocols for recurrent cases of Malassezia otitis in dogs.
Fungaemia caused by Malassezia spp. in hospitalized patients requires prompt and appropriate therapy, but standard methods for the definition of the in vitro antifungal susceptibility have not been established yet. In this study, the in vitro susceptibility of Malassezia furfur from bloodstream infections (BSIs) to amphotericin B (AMB), fluconazole (FLC), itraconazole (ITC), posaconazole (POS) and voriconazole (VRC) was assessed using the broth microdilution (BMD) method of the Clinical and Laboratory Standards Institute (CLSI) with different media such as modified Sabouraud dextrose broth (SDB), RPMI and Christensen's urea broth (CUB). Optimal broth media that allow sufficient growth of M. furfur, and produce reliable and reproducible MICs using the CLSI BMD protocol were assessed. Thirty-six M. furfur isolates collected from BSIs of patients before and during AMB therapy, and receiving FLC prophylaxis, were tested. A good growth of M. furfur was observed in RPMI, CUB and SDB at 32 °C for 48 and 72 h. No statistically significant differences were detected between the MIC values registered after 48 and 72 h incubation. ITC, POS and VRC displayed lower MICs than FLC and AMB. These last two antifungal drugs showed higher and lower MICs, respectively, when the isolates were tested in SDB. SDB is the only medium in which it is possible to detect isolates with high FLC MICs in patients receiving FLC prophylaxis. A large number of isolates showed high AMB MIC values regardless of the media used. In conclusion, SDB might be suitable to determine triazole susceptibility. However, the media, the drug formulation or the breakpoints herein applied might not be useful for assessing the AMB susceptibility of M. furfur from BSIs.
Canine Malassezia dermatitis is frequently treated with systemic ketoconazole (KTZ) and itraconazole (ITZ). However, no information is available on the antifungal susceptibility to azoles and allilamine of Malassezia pachydermatis isolates from dogs with or without skin lesions. The present study was designed to evaluate the in vitro antifungal susceptibility of M. pachydermatis strains from dogs with or without skin lesions to KTZ, ITZ, miconazole (MICO), fluconazole (FLZ), posaconazole (POS), voriconazole (VOR) and terbinafine (TER) using the Clinical and Laboratory Standards Institute reference Broth Microdilution Method (CLSI M27-A2). The association between the susceptibility to antifungal compounds and the origin of M. pachydermatis, from skin with or without lesions has been also assessed. A total of 62 M. pachydermatis strains from healthy dogs (i.e., Group A=30) or with skin lesions (i.e., Group B=32) were tested. ITZ, KTZ and POS showed the highest activity against M. pachydermatis strains, whereas MICO TER and FLZ the lowest. A higher number of Malassezia resistant strains were registered among isolates from Group B than those from Group A. This study indicates that M. pachydermatis strains were susceptible to ITZ, KTZ, and POS. However, dogs with lesions may harbour strains with low susceptibility to antifungal agents and displaying cross-resistance phenomena to azole. The antifungal therapy in Malassezia infections requires careful appraisal of choice of drugs especially in cases of unresponsiveness to antifungal treatment or recurrent infections.
Dermatitis caused by Malassezia spp., one of most common skin disease in dogs, requires prolonged therapy and/or high doses of antifungal agents. In the present study, the antifungal susceptibility of M. pachydermatis to ketoconazole (KTZ), fluconazole (FLZ), itraconazole (ITZ), posaconazole (POS) and voriconazole (VOR) was evaluated in vitro using both CLSI reference broth microdilution (CLSI BMD) and E-test. A total of 62 M. pachydermatis strains from dogs with and without skin lesions were tested. M. pachydermatis strains were susceptible to ITZ, KTZ and POS using both test methods, with the highest MIC found in tests of FLZ. Essential agreement between the two methods ranged from 87.1% (VOR) to 91.9% (ITZ), and categorical agreement from 74.2% (FLZ) to 96.8% (ITZ). Minor error discrepancies were observed between the two methods, with major discrepancies observed for KTZ. A higher MIC(50) value for FLZ was noted with M. pachydermatis genotype B. The MICs(50) of M. pachydermatis genotype B for KTZ, VOR and POS were higher in isolates from dogs with skin lesions than those in isolates from animals without skin lesions. The results suggest a link between genotypes of M. pachydermatis and in vitro drug susceptibility. The categorical agreement for both E-test and CLSI BMD methods found in this investigation confirms the E-test as a reliable diagnostic method for routine use in clinical mycology laboratories.
Malassezia are lipid dependent basidiomycetous yeasts that inhabit the skin and mucosa of humans and other warm-blooded animals, and are a major component of the skin microbiome. They occur as skin commensals, but are also associated with various skin disorders and bloodstream infections. The genus currently comprises 17 species and has recently been assigned its own class, Malasseziomycetes. Importantly, multiple Malassezia species and/or genotypes may cause unique or similar pathologies and vary in their antifungal susceptibility. In addition to culture-based approaches, culture-independent methods have added to our understanding of Malassezia presence and abundance and their relationship to pathogenicity. Moreover, these novel approaches have suggested a much wider-spread presence, including other human body parts and even other ecosystems, but their role in these arenas requires further clarification. With recent successful transformation and genetic engineering of Malassezia, the role of specific genes in pathogenesis can now be studied. We suggest that characterizing the metabolic impact of Malassezia communities rather than species identification is key in elucidation of pathophysiological associations. Finally, the increasing availability of genome sequences may provide key information aiding faster diagnostics, and understanding of the biochemical mechanisms for Malassezia skin adaptation and the design of future drugs.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) offers an effective alternative to phenotypic and molecular methods for the rapid identification of microorganisms. Our aim in this study was to create an in-house library for a set of strains of nine uncommonly reported human and animal cryptococcal species, including Cryptococcus adeliensis, C. albidosimilis, C. albidus, C. aureus, C. carnescens, C. laurentii, C. magnus, C. victoriae and C. uniguttulatus, and to use this library to make timely and correct identifications using MALDI-TOF MS for use in routine laboratory diagnostics. Protein extracts obtained via the formic acid extraction method of 62 veterinary non-C. neoformans-C. gattii cryptococcal isolates were studied. The obtained mass spectra correctly grouped all 62 studied isolates according to species identification previously obtained by internal transcribe spacer sequence analysis. The in-house database was than exported and successfully uploaded to the Microflex LT (Maldi Biotyper; Bruker Daltonics) instrument at a different diagnostic laboratory in Italy. Scores >2.7 obtained from isolates reanalyzed in the latter laboratory supported the high reproducibility of the method. The possibility of creating and transferring an in-house library adds to the usefulness MALDI-TOF MS an important tool for the rapid and inexpensive identification of pathogenic and saprophytic fungi as required for differential diagnosis of human and animal mycoses
Dermatophytes are fungi that can be contagious and cause skin infections of mammals, including humans. The etiological diagnosis of dermatophytic infection is usually performed using a combination of in vitro-culture and microscopic methods. However, in vitro culture requires long incubation time and it is frequently complicated by the presence of opportunistic fungi (e.g., species of Alternaria, Cladosporium, Mucor, Penicillium, Scopularopsis, Rhizopus and Chrysosporium), which can be present on the animal hair coat. Recent studies have demonstrated that first and second internal transcribed spacers (ITS-1 and ITS-2, respectively) and the entire internal transcribed spacer region (ITS+) of nuclear ribosomal DNA as well as the chitin synthase 1 (chs1) gene are promising markers for selected species of dermatophytes. To date, the few studies attempting to specifically characterize dermatophytes from hair samples from dogs using PCR-based methodology relied on sequence-based analysis of selected genetic markers. The aim of the present study was to establish and evaluate a PCR-based approach employing genetic markers in nuclear DNA for the specific detection of dermatophytes on hair samples from dogs. Using 199 hair samples, we directly compared the test results of our one-step and nested-PCR assays with those based on conventional in vitro culture techniques (using the latter as the reference method). The one step-PCR showed a low sensibility (62.2%) and very high specificity (96.6%) for the testing of samples from dogs and allowed the differentiation of Microsporum canis from other dermatophytes. The nested-PCR achieved higher sensibility (89.2%) and specificity (95.7%) and allowed the differentiation of M. canis from Trichophyton interdigitale (zoophilic) and geophilic dermatophytes (i.e. Microsporum gypseum or Trichophyton terrestre). The results provide practical tools for diagnostic applications to support clinicians in initiating prompt and targeted chemotherapy of canine dermatophytoses.
Dermatophytes are fungi that invade and propagate in the keratinized skin of mammals, including humans, often causing contagious infections. The species of medical concern belong to the genera Microsporum, Trichophyton, Epidermophyton (in their anamorphic state) and Arthroderma (in their telomorphic state), which were traditionally identified based on their morphology and biochemical characters. Nonetheless, limitations linked to the differentiation of closely related agents at species and strains level have been recently overcome by molecular studies. Indeed, an accurate identification of dermatophytes is pivotal for the establishment of effective control and prevention programs as well as for determining the most appropriate and effective antifungal therapies to be applied. This article reviews the DNA techniques and the molecular markers used to identify and to characterize dermatophyte species, as well as aspects of their phylogeny and evolution. The applications of typing molecular strain to both basic and applied research (e.g., taxonomy, ecology, typing of infection, antifungal susceptibility) have also been discussed.
Little information is available on the molecular epidemiology of dermatophytoses in rabbit farms and farm workers. A total of 117 isolates belonging to the Trichophyton mentagrophytes complex and 21 isolates of Microsporum canis were collected from rabbits with or without skin lesions, air samples of farms known to harbour these pathogens, and from farm workers with skin lesions, and molecularly characterized. Sequencing of amplicons from the T. mentagrophytes complex and M. canis isolates revealed the presence of one sequence-type for both partial chitin synthase-1 gene (pchs-1) and ribosomal internal transcribed spacer (ITS+), respectively. On the basis of comparative sequence analyses, isolated representing the T. mentagrophytes complex were molecularly identified as Trichophyton interdigitale (zoophilic) Priestley. The M. canis and T. interdigitale pchs-1 sequences herein analysed were 100% homologous to known sequences from different hosts (i.e., cats, dogs, humans and rabbits). Conversely, the ITS+ sequences of T. interdigitale from dogs, pigs and mice were identical, but displayed up to 8.6% difference with those from humans, guinea pigs and rabbits. The results of this study suggest that environmental and clinical isolates of T. interdigitale (zoophilic) and M. canis might share a common origin. Interestingly, the close phylogenetic relationship between T. interdigitale (zoophilic) strains and isolates from dogs, pigs and mice might indicate that these animals represented a reservoir of dermatophyte infection in rabbit farms. These animal species should therefore be considered when setting up control protocols to prevent infections by dermatophytes and their zoonotic transmission.
Cryptococcosis is a life-threatening fungal disease that infects humans and animals worldwide. Inhalation of fungal particles from an environmental source can cause pri- mary infection of the respiratory system. As animals can be considered a sentinel for human diseases, the aim of this study was to determine the prevalence and molecular identity of Cryptococcus spp. in the nasal cavity of feral cats. Cats from 162 urban and rural feral cat colonies were sampled over 3 years. Of 766 cats from which nasal swabs were obtained, Cryptococcus spp. were recovered from 95 (12.6%), including 37 C. magnus (4.8%), 16 C. albidus (2.0%), 15 C. carnescens (1.9%), 12 C. neoformans (1.6%), as well as C. oeirensis (n = 3), C. victoriae (n = 3), C. albidosimilis (n = 2), Filobasidium globisporum (n = 2), C. adeliensis (n = 1), C. flavescens (n = 1), C. dimnae (n = 1), C. saitoi (n = 1), and C. wieringae (n = 1) with prevalence <1%. Thirteen Cryptococcus species were identified by polymerase chain reaction and se- quencing of internal transcribed spacer amplicons. Statistical analysis did not identify any predisposing factors that contributed to nasal colonization (eg, sex, age, season, or habitat). Results suggest that asymptomatic feral cats may carry C. neoformans and other Cryptococcus species in their sinonasal cavity. Genotyping of the specific cryptococcal isolates provides a better understanding of the epidemiology of these yeasts.
Background Rhipicephalus sanguineus sensu lato ticks are widespread worldwide due to their adaptability to survive under different environmental conditions. They may act as vectors of a wide range of pathogens to humans and animals and their control is based on the use of chemical products on dogs and in the environment. Alternative control strategies, such as the use of entomopathogenic fungi as bio-control agents have also been investigated. The ability of native strains of Beauveria bassiana sensu lato in causing mortality in different tick species (e.g., Amblyomma cajennense and Rhipicephalus microplus) has been demonstrated. However, limited studies have assessed the use of B. bassiana for the control of R. sanguineus s.l. and none of them have employed native strains of this fungus. Here we investigated the pathogenicity of a native strain of B. bassiana (CD1123) against all developmental stages of R. sanguineus s.l.. Methods Batches of eggs, larvae, nymphs and adult ticks were immersed in a suspension of 107 conidia/ml of B. bassiana s.l., isolated from a R. sanguineus s.l. engorged female. All treatment and control groups were observed for 20 days, and the biological parameters (i.e., mortality, hatching, moulting percentage, pre-oviposition period, oviposition period and rate, eggs production efficiency, reproductive efficiency and fitness indexes) were assessed. Results The effect of the B. bassiana strain tested herein on eggs, larvae, nymphs and adults showed a significantly higher mortality than those of the control groups (p < 0.05) at 5 days post-infection. No infected eggs hatched and no infected larvae moulted. Only 15% of infected nymphs moulted into adults. All biological parameters of treated groups differed significantly (p < 0.001) from those of control groups. Conclusions This study demonstrates that a suspension containing 107 conidia/ml of a native B. bassiana strain is highly virulent towards all life-cycle developmental stages of R. sanguineus s.l. and may be of potential interest as a biological control agent against these ticks.
Fusarium spp. are fungi worldwide distributed in soil, plants, water and other organic substrates which sometimes act as pathogens causing superficial and or disseminated infections in humans and animals. Several skin and shell diseases have been described to occur in sea turtles but the role of Fusarium spp. as a primary cause of infections remains anecdotic. The present study was designed to investigate the occurrence of Fusarium spp. on sea turtles with or without shell and skin lesions. A total of 90 animals (i.e., 38 without and 52 with lesions) were enrolled in the study. Shell and skin scraps were collected from each turtle on three anatomical sites (i.e., carapace, flipper and plastron) examined microscopically (i.e., cytological examination with Calcofluor and scanning electron microscope -SEM analysis) and cultured. Seven (7.8%) out of 90 samples gave positive results at the microscopic examination with calcoflour (i.e., 3 animals without lesions and 4 animals with lesions). SEM analysis revealed the presence of fungal hyphae on and in the internal structures of the carapace in all samples collected from animals with lesions whereas no fungal structures were observed in animals without lesions. Fusarium spp. was isolated from 23 (44.2%) isolates collected from animals with shell and skin lesions and from 3 (7.9%) without lesions. Fusarium spp. were also isolated and identified from the sand of the filter of the rescue centres. Occurrence of lesions and recovering time spent in the rescue centre were identified as the most significant risk factors (p<0.05). Fusarium solani (7.8%), Fusarium oxysporum (5.6%), Fusarium acuminatum (0.74%) and Fusarium brachygibbosum (0.37%) were morphologically and molecularly identified. The results of this study suggest that fusariosis should be included in the differential diagnosis of shell and skin infections in sea turtles and that the diagnosis of infections should be performed using SEM analysis associated with fungal culture. Finally, in the rescue centre, management procedures (e.g., protocols of disinfection) are suggested in order to control the infections.
Three lipid-dependent Malassezia isolates (here named 114A, 114B and 114C) recovered from a dog with skin lesions were phenotypically and genotypically characterized. All presented ovoid cells and buds formed on a narrow base. Most of the results from physiological tests were consistent with those of Malassezia furfur. The phylogenetic analysis of ITS-1 and LSU nucleotide sequences was concordant in placing all three clinical Malassezia isolates close to M. furfur. However, the phylogenetic data on the chs-2 sequence revealed that clinical isolate 114A is distinct from M. furfur and was closely affiliated to the sequence of M. pachydermatis with high nodal support. In particular, lipid-dependent isolates 114A displayed chs-2 sequences similar (100%) to that of the non-lipid dependent species Malassezia pachydermatis. The presence of the genetic and physiological polymorphisms detected in these three isolates of M. furfur could have resulted from a process of adaptation of this anthropophilic species to a new host.
ATP-binding cassette (ABC) transporters have been shown to be involved in pesticide detoxification in arthropod vectors and are thought to contribute to the development of drug resistance. Little is currently known about the role they play in ticks, which are among the more important vectors of human and animal pathogens. Here, the role of ABC transporters in the transport of fipronil and ivermectin acaricides in the tick Rhipicephalus sanguineus (Ixodida: Ixodidae) was investigated. Larvae were treated with acaricide alone and acaricide in combination with a sub-lethal dose of the ABC transporter inhibitor cyclosporine A. The LC50 doses and 95% confidence intervals (CIs) estimated by mortality data using probit analysis were 67.930p.p.m. (95% CI 53.780-90.861) for fipronil and 3741p.p.m. (95% CI 2857-4647) for ivermectin. The pre-exposure of larvae to a sub-lethal dose of cyclosporine A reduced the LC50 dose of fipronil to 4.808p.p.m. (95% CI 0.715-9.527) and that of ivermectin to 167p.p.m. (95% CI 15-449), which increased toxicity by about 14- and 22-fold, respectively. The comparison of mortality data for each separate acaricide concentration showed the synergic effect of cyclosporine A to be reduced at higher concentrations of acaricide. These results show for the first time a strong association between ABC transporters and acaricide detoxification in R.sanguineus s.l.
Rhipicephalus sanguineus sensu lato (Ixodida: Ixodidae) is possibly the most widespread tick species worldwide, responsible for transmitting several vector-borne pathogens of medical and veterinary importance. Here, we explore the transcriptome of R. sanguineus s.l. larvae (Putignano strain). We sequenced total RNA from R. sanguineus s.l. larvae. A total of 15,566,986 short paired-end reads were de novo-assembled into 33,396 transcripts and then annotated and analyzed. Particular attention was paid to transcripts putatively encoding ATP-binding proteins, due to their importance as mechanisms of detoxification and acaricide resistance. Additionally, microsatellite loci were investigated, as these are useful markers for population genetic studies. The present data and analyses provide a comprehensive transcriptomic resource for R. sanguineus. The results presented here will aid further genetic and genomic studies of this important tick species
Domestic and wild birds may act as carriers of human pathogenic fungi, although the role of laying hens in spreading yeasts has never been investigated. We evaluated the presence of yeasts in the cloaca (Group I, n = 364), feces (Group II, n = 96), and eggs (Group III, n = 270) of laying hens. The occurrence and the population size of yeasts on the eggshell, as well as in the yolks and albumens, were assessed at the oviposition time and during storage of eggs at 22 ± 1°C and 4 ± 1°C. A statistically higher prevalence and population size of yeasts were recorded in Group I (49.7% and 1.3 × 104 cfu/ml) and II (63.8% and 2.8 × 105 cfu/ml) than in Group III (20.7% and 19.9 cfu/ml). Candida catenulata and Candida albicans were the most frequent species isolated. Candida famata and Trichosporon asteroides were isolated only from the eggshells, whereas Candida catenulata was also isolated from yolks and albumens. During storage, the yeast population size on the shell decreased (from 37.5 to 8.5 cfu/ml) in eggs at 22 ± 1°C and increased (from 4.6 to 35.3 cfu/ml) at 4 ± 1°C. The laying hens harbor potentially pathogenic yeasts in their gastrointestinal tract and are prone to disseminating them in the environment through the feces and eggs. Eggshell contamination might occur during the passage through the cloaca or following deposition whereas yolk and albumen contamination might depend on yeast density on eggshell.
Negli ultimi decenni si è registrato un incremento delle infezioni fungine invasive (IFI), dovuto all'aumento del numero di pazienti immunocompromessi. Tra le IFI, candidemie e aspergillosi rappresentano le infezioni maggiormente conosciute e per le quali esistono linee guida per una corretta diagnosi e gestione terapeutica. Ciononostante, si è assistito ad un progressivo aumento di IFI sostenute da patogeni emergenti, tra cui Malassezia spp., che richiedono particolari tecniche di coltura per la diagnosi non utilizzate nella routine. La limitata conoscenza dei fattori di rischio delle IFI da Malassezia associate alle difficoltà diagnostiche si traduce in un'elevata morbilità e mortalità di tali infezioni, in un ritardo nella diagnosi e nell'inizio della terapia, e quindi in un peggioramento dell'outcome del paziente.Le attività che il progetto propone sono quella di offrire alle unità ospedaliere un servizio che garantisca una diagnosi certa e rapida delle infezioni da Malassezia; studiare la prevalenza delle IFI da Malassezia e i potenziali fattori di rischio nei pazienti arruolati in modo da ridurne la morbilità e mortalità; studiare la sensibilità in vitro agli antifungini e la presenza di fenomeni di farmacoresistenza in modo da ottimizzare il trattamento terapeutico; stilare linee guida sulla diagnosi e sulla corretta gestione delle IFI da Malassezia spp. mediante l'attiva collaborazione dei microbiologi e clinici degli ospedali pugliesi coinvolti nel progetto.
Condividi questo sito sui social