Effettua una ricerca
Elena Ranieri
Ruolo
Professore Associato
Organizzazione
Università degli Studi di Foggia
Dipartimento
Dipartimento di Scienze Mediche e Chirurgiche
Area Scientifica
Area 06 - Scienze mediche
Settore Scientifico Disciplinare
MED/05 - Patologia Clinica
Settore ERC 1° livello
LS - Life sciences
Settore ERC 2° livello
LS4 Physiology, Pathophysiology and Endocrinology: Organ physiology, pathophysiology, endocrinology, metabolism, ageing, tumorigenesis, cardiovascular disease, metabolic syndrome
Settore ERC 3° livello
LS4_6 Cancer and its biological basis
Chronic antibody-mediated rejection (CAMR) represents the main cause of kidney graft loss. To uncover the molecular mechanisms underlying this condition, we characterized the molecular signature of peripheral blood mononuclear cells (PBMCs) and, separately, of CD4(+) T lymphocytes isolated from CAMR patients, compared to kidney transplant recipients with normal graft function and histology. We enrolled 29 patients with biopsy-proven CAMR, 29 stable transplant recipients (controls), and 8 transplant recipients with clinical and histological evidence of interstitial fibrosis/tubular atrophy. Messenger RNA and microRNA profiling of PBMCs and CD4(+) T lymphocytes was performed using Agilent microarrays in eight randomly selected patients per group from CAMR and control subjects. Results were evaluated statistically and by functional pathway analysis (Ingenuity Pathway Analysis) and validated in the remaining subjects. In PBMCs, 45 genes were differentially expressed between the two groups, most of which were up-regulated in CAMR and were involved in type I interferon signalling. In the same patients, 16 microRNAs were down-regulated in CAMR subjects compared to controls: four were predicted modulators of six mRNAs identified in the transcriptional analysis. In silico functional analysis supported the involvement of type I interferon signalling. To further confirm this result, we investigated the transcriptomic profiles of CD4(+) T lymphocytes in an independent group of patients, observing that the activation of type I interferon signalling was a specific hallmark of CAMR. In addition, in CAMR patients, we detected a reduction of circulating BDCA2(+) dendritic cells, the natural type I interferon-producing cells, and their recruitment into the graft along with increased expression of MXA, a type I interferon-induced protein, at the tubulointerstitial and vascular level. Finally, interferon alpha mRNA expression was significantly increased in CAMR compared to control biopsies. We conclude that type I interferon signalling may represent the molecular signature of CAMR.
BACKGROUND AND AIM: Kidney cancer is associated with alteration in the pathways regulated by von Hippel-Lindau protein and hypoxia inducible factor α. Tight interrelationships have been evidenced between hypoxia response pathways and circadian pathways. The dysregulation of the circadian clock circuitry is involved in carcinogenesis. The aim of our study was to evaluate the clock gene machinery in kidney cancer. METHODS: mRNA expression levels of the clock genes ARNTL1, ARNTL2, CLOCK, PER1, PER2, PER3, CRY1, CRY2, TIMELESS, TIPIN and CSNK1E and of the clock controlled gene SERPINE1 were evaluated by DNA microarray assays and by qRT-PCR in primary tumor and matched nontumorous tissue collected from a cohort of 11 consecutive kidney cancer patients. RESULTS: In kidney tumor tissue, we found down-regulation of PER2 (median=0.658, Q1-Q3=0.562-0.744, P<0.01), TIMELESS (median=0.705, Q1-Q3=0.299-1.330, P=0.04) and TIPIN (median=0.556, Q1-Q3=0.385-1.945, P=0.01), up-regulation of SERPINE1 (median=1.628, Q1-Q3=0.339-4.071, P=0.04), whereas the expression of ARNTL2 (median=0.605, Q1-Q3=0.318-1.738, P=0.74) and CSNK1E (median=0.927, Q1-Q3=0.612-2.321, P=0.33) did not differ. A statistically significant correlation was evidenced between mRNA levels of PER2 and CSNKIE (r=0.791, P<0.01), PER2 and TIPIN (r=0.729, P=0.01), PER2 and SERPINE1 (r=0.704, P=0.01), TIMELESS and TIPIN (r=0.605, P=0.04), TIMELESS and CSNKIE (r=0.637, P=0.03), TIPIN and CSNKIE (r=0.940, P<0.01). CONCLUSION: In kidney cancer, the circadian clock circuitry is deregulated and the altered expression of the clock genes might be involved in disease onset and progression.
BACKGROUND: It is known from recent studies that more than 90% of human multi-exon genes are subject to Alternative Splicing (AS), a key molecular mechanism in which multiple transcripts may be generated from a single gene. It is widely recognized that a breakdown in AS mechanisms plays an important role in cellular differentiation and pathologies. Polymerase Chain Reactions, microarrays and sequencing technologies have been applied to the study of transcript diversity arising from alternative expression. Last generation Affymetrix GeneChip Human Exon 1.0 ST Arrays offer a more detailed view of the gene expression profile providing information on the AS patterns. The exon array technology, with more than five million data points, can detect approximately one million exons, and it allows performing analyses at both gene and exon level. In this paper we describe BEAT, an integrated user-friendly bioinformatics framework to store, analyze and visualize exon arrays datasets. It combines a data warehouse approach with some rigorous statistical methods for assessing the AS of genes involved in diseases. Meta statistics are proposed as a novel approach to explore the analysis results. BEAT is available at http://beat.ba.itb.cnr.it. RESULTS: BEAT is a web tool which allows uploading and analyzing exon array datasets using standard statistical methods and an easy-to-use graphical web front-end. BEAT has been tested on a dataset with 173 samples and tuned using new datasets of exon array experiments from 28 colorectal cancer and 26 renal cell cancer samples produced at the Medical Genetics Unit of IRCCS Casa Sollievo della Sofferenza.To highlight all possible AS events, alternative names, accession Ids, Gene Ontology terms and biochemical pathways annotations are integrated with exon and gene level expression plots. The user can customize the results choosing custom thresholds for the statistical parameters and exploiting the available clinical data of the samples for a multivariate AS analysis. CONCLUSIONS: Despite exon array chips being widely used for transcriptomics studies, there is a lack of analysis tools offering advanced statistical features and requiring no programming knowledge. BEAT provides a user-friendly platform for a comprehensive study of AS events in human diseases, displaying the analysis results with easily interpretable and interactive tables and graphics.
Enzyme-linked immune absorbent spot (Elispot) is a quantitative method for measuring relevant parameters of T cell activation. The sensitivity of Elispot allows the detection of low-frequency antigen-specific T cells that secrete cytokines and effector molecules, such as granzyme B and perforin. Cytotoxic T cell (CTL) studies have taken advantage with this high-throughput technology by providing insights into quantity and immune kinetics. Accuracy, sensitivity, reproducibility, and robustness of Elispot resulted in a wide range of applications in research as well as in diagnostic field. Actually, CTL monitoring by Elispot is a gold standard for the evaluation of antigen-specific T cell immunity in clinical trials and vaccine candidates where the ability to detect rare antigen-specific T cells is of relevance for immune diagnostic. The most utilized Elispot assay is the interferon-gamma (IFN-γ) test, a marker for CD8(+) CTL activation, but Elispot can also be used to distinguish different subsets of activated T cells by using other cytokines such as T-helper (Th) 1-type cells (characterized by the production of IFN-γ, IL-2, IL-6, IL-12, IL-21, and TNF-α), Th2 (producing cytokines like IL-4, IL-5, IL-10, and IL-13), and Th17 (IL-17) cells. The reliability of Elispot-generated data, by the evaluation of T cell frequency recognizing individual antigen/peptide, is the core of this method currently applied widely to investigate specific immune responses in cancer, infections, allergies, and autoimmune diseases. The Elispot assay is competing with other methods measuring single-cell cytokine production, e.g., intracellular cytokine by FACS or Miltenyi cytokine secretion assay. Other types of lymphocyte frequency and function assays include limiting dilution assay (LDA), cytotoxic T cell assay (CTL), and tetramer staining. Compared with respect to sensitivity the Elispot assay is outranking other methods to define frequency of antigen-specific lymphocytes. The method described herein would like to offer helpful and clear protocols for researchers that apply Elispot. IFN-γ and perforin Elispot assays are described.
We descripe three patients with SRNS associated with pathogentic changes in two CoQ pathway genes: one novel homozygous COQ2 variant was identified in two cousins with adolescent-onset SRNS and mild neurological symptoms (Family 1); and one novel COQ6 variant was found in a child with early onset SRNS without deafness and neurological involvement (Family 2). (A, B) : families (C) : Sanger sequencing showing COQ2 change: NM_015697.7: c.1169G>C; NP_056512.5; p.Gly390Ala (c.1019G>C; p.Gly340Ala, according to KU877220 GenBank sequence) (D) : Sanger sequencing showing COQ6 change: NM_182476.2:c.782C>T; NP_872282.1:p.Pro261Leu.
Clear cell renal cell carcinoma (ccRCC) is the most common malignant renal epithelial tumor and also the most deadly. To identify molecular changes occurring in ccRCC, in the present study we performed a genome wide analysis of its entire complement of mRNAs. Gene and exon-level analyses were carried out by means of the Affymetrix Exon Array platform. To achieve a reliable detection of differentially expressed cassette exons we implemented a novel methodology that considered contiguous combinations of exon triplets and candidate differentially expressed cassette exons were identified when the expression level was significantly different only in the central exon of the triplet. More detailed analyses were performed for selected genes using quantitative RT-PCR and confocal laser scanning microscopy. Our analysis detected over 2,000 differentially expressed genes, and about 250 genes alternatively spliced and showed differential inclusion of specific cassette exons comparing tumor and non-tumoral tissues. We demonstrated the presence in ccRCC of an altered expression of the PTP4A3, LAMA4, KCNJ1 and TCF21 genes (at both transcript and protein level). Furthermore, we confirmed, at the mRNA level, the involvement of CAV2 and SFRP genes that have previously been identified. At exon level, among potential candidates we validated a differentially included cassette exon in DAB2 gene with a significant increase of DAB2 p96 splice variant as compared to the p67 isoform. Based on the results obtained, and their robustness according to both statistical analysis and literature surveys, we believe that a combination of gene/isoform expression signature may remarkably contribute, after suitable validation, to a more effective and reliable definition of molecular biomarkers for ccRCC early diagnosis, prognosis and prediction of therapeutic response.
Inflammation and immune system alterations contribute to bone damage in many pathologies by inducing the differentiation of osteoclasts (OCs), the bone resorbing cells. This link is largely unexplored in chronic kidney disease (CKD) and haemodialysis (HD) patients, in which reduced renal function is accompanied by an increased inflammatory state and skeletal abnormality.
Colorectal carcinogenesis relies on loss of homeostasic mechanisms regulating cell proliferation, differentiation and survival. These cell processes have been reported to be influenced independently by transcription factors activated downstream of the Wnt pathway, such as SOX9 and β-catenin, and by the nuclear receptor PPARγ. The purpose of this study was to explore the expression levels and functional link between SOX9, β-catenin and PPARγ in the pathogenesis of colorectal cancer (CRC). We evaluated SOX9, β-catenin and PPARγ expression levels on human CRC specimens by qPCR and immunoblot detection. We tested the hypothesis that PPARγ activation might affect SOX9 and β-catenin expression using four colon cancer cell lines (CaCo2, SW480, HCT116, and HT29 cells). In CRC tissues SOX9 resulted up-regulated at both mRNA and protein levels when compared to matched normal mucosa, β-catenin resulted up-regulated at protein levels, while PPARG mRNA and PPARγ protein levels were down-regulated. A significant relationship was observed between high PPARG and SOX9 expression levels in the tumor tissue and female gender (p=0.005 and p=0.04, respectively), and between high SOX9 expression in the tumor tissue and age (p=0.04) and microsatellite instability (MSI), in particular with MSI-H (p=0.0002). Moreover, treatment with the synthetic PPARγ ligand rosiglitazone induced different changes of SOX9 and β-catenin expression and subcellular localization in the colon cancer cell lines examined. In conclusion, SOX9, β-catenin and PPARγ expression levels are deregulated in the CRC tissue, and in colon cancer cell lines ligand-dependent PPARγ activation unevenly influences SOX9 and β-catenin expression and subcellular localization, suggesting a variable mechanistic role in colon carcinogenesis.
LT3highILT4high dendritic cells (DCs) may cause anergy in CD4+CD45RO+CD25+ T cells transforming them into regulatory T cells (Tregs). Here, we tested whether chronic exposure to rapamycin may modulate this immunoregulatory pathway in renal transplant recipients. Forty renal transplant patients with biopsy-proven chronic allograft nephropathy and receiving calcineurin inhibitors were randomly assigned to either calcineurin inhibitor dose reduction or withdrawal with rapamycin introduction. At conversion and 2 years thereafter, we measured the rapamycin effects on circulating DCs (BDCA1/BDCA2 and ILT3/ILT4 expression), CD4+/CD25high/Foxp3+ Tregs, CD8+/CD28- T cells, and the Th1/Th2 balance in graft biopsies. In rapamycin-treated patients, peripheral BDCA2+ cells were significantly increased along with ILT3/ILT4+ DCs. The number of circulating CD4+/CD25high/Foxp3+/CTLA4+ Tregs, CD8+CD28- T cells, and HLA-G serum levels were higher in the rapamycin-treated group. The number of ILT3/ILT4+BDCA2+ DC was directly and significantly correlated with circulating Tregs and CD8+CD28- T cells. ILT3/ILT4 expression was increased in kidney biopsies at the end of the study period along with a significant bias toward a Th2 response within the graft only in the rapamycin-treated patients. Thus, rapamycin induces the upregulation of ILT3 and ILT4 on the DC surface, and this effect is associated with an increase in the number of Tregs and expansion of the CD8+CD28- T cell population. This suggests that mTOR inhibition may promote a novel immunoregulatory pathway.
Next Generation Sequencing (NGS), together with our evolving knowledge of genes and disease, is likely to change the current practice of medicine and public health by facilitating more accurate, sophisticated, and cost-effective genetic testing. Here, we propose a new molecular approach by using MiSeq Sequencing System (Illumina) to investigate the presence of mutations/variants in genes of JAK/STAT pathway involved in different cytotoxic T lymphocytes (CTL)-mediated immune disorders and to develop and validate new and less expensive molecular protocol based on Next Generation Sequencing.
Coagulation and complement activation represent key events in ischaemia-reperfusion-induced renal injury leading to delayed graft function (DGF). It is still unclear whether the coagulation cascade may also influence the acquired immunity. The aim of the present study was to investigate the expression of protease-activated receptor 1 (PAR-1), the main thrombin receptor, by graft-infiltrating dendritic cells (DCs), and to evaluate whether thrombin may influence DCs complement production and T-cell response.
In some tumours, despite a wild-type p53 gene, the p53 pathway is inactivated by alterations in its regulators or by unknown mechanisms, leading to resistance to cytotoxic therapies. Understanding the mechanisms of functional inactivation of wild-type p53 in these tumours may help to define prospective targets for treating cancer by restoring p53 activity. Recently, we identified TRIM8 as a new p53 modulator, which stabilizes p53 impairing its association with MDM2 and inducing the reduction of cell proliferation. In this paper we demonstrated that TRIM8 deficit dramatically impairs p53-mediated cellular responses to chemotherapeutic drugs and that TRIM8 is down regulated in patients affected by clear cell Renal Cell Carcinoma (ccRCC), an aggressive drug-resistant cancer showing wild-type p53. These results suggest that down regulation of TRIM8 might be an alternative way to suppress p53 activity in RCC. Interestingly, we show that TRIM8 expression recovery in RCC cell lines renders these cells sensitive to chemotherapeutic treatments following p53 pathway re-activation. These findings provide the first mechanistic link between TRIM8 and the drug resistance of ccRCC and suggest more generally that TRIM8 could be used as enhancer of the chemotherapy efficacy in cancers where p53 is wild-type and its pathway is defective.
Background and objectives Mutations in the TRPC6 gene have been recently identified as the cause of late-onset autosomal-dominant focal segmental glomerulosclerosis (FSGS). To extend the screening, we analyzed TRPC6 in 33 Italian children with sporadic early-onset SRNS and three Italian families with adult-onset FSGS. Design, setting, participants, & measurements TRPC6 mutation analysis was performed through PCR and sequencing. The effects of the detected amino acid substitutions were analyzed by bioinformatics tools and functional in vitro studies. The expression levels of TRPC6 and nephrin proteins were evaluated by confocal microscopy. Results Three heterozygous missense mutations (c.374A>G_p.N125S, c.653A>T_p.H218L, c.2684G>T_p.R895L) were identified. The first new mutation, p.H218L, was found in a 18-year-old boy who presented a severe form of FSGS at the age of 8 years. The second, p.R895L, a new de novo mutation, was identified in a girl with collapsing glomerulosclerosis at the age of 2 years. The former mutation, p.N125S, was found in two siblings with early-onset steroid-resistant nephrotic syndrome (SRNS) at the ages of 4 and 14 years. Renal immunofluorescence revealed upregulated expression of TRPC6 and loss of nephrin in glomeruli. The intracellular calcium concentrations were significantly higher in the cells expressing all mutant TRPC6 channels compared with cells expressing wild-type TRPC6
Background: Protein phosphorylation is considered a key event in signal transduction. Peripheral blood mononuclear cells (PBMCs) are a critical component of the immune system. The analysis of PBMCs phosphoproteome might help elucidate the signaling pathways essential to their biological role in health, immunological diseases and cancer. Enrichment of phosphoproteins becomes a prerequisite for phosphoproteome analysis and conventionally requires a multi-step procedure and sophisticated equipments. In this study, we standardized 2D-PAGE phosphoproteome analysis of PBMCs and compared two phosphoprotein enrichment methods, lanthanum chloride precipitation and affinity micro-column. Further, the different specificity for PBMCs phosphorylated proteins of each method was investigated. Results: PBMCs were isolated from fresh whole blood of ten healthy donors. PBMCs phosphoproteins were enriched either by phosphoprotein precipitation using lanthanum chloride, with an overall yield of 8.9 +/- 4.7%, or by using an affinity micro-column, with a lower yield of 3.2 +/- 1.6% (p = 0.05). Image analysis of Sypro-stained analytical 2D-PAGE gels detected 554 +/- 68 protein spots for the lanthanum pattern [inter-assay coefficient of variation (CV) = 27.0%, intra-assay CV = 10.7%] and 575 +/- 35 protein spots for the micro-column pattern (inter-assay CV = 26.8%; intra-assay CV = 11.0%) (p = 0.6), with 57% match of the spots detected by the 2 approaches. 1D gel electrophoresis and western blot analyses of the supernatants suggested a better lanthanum ions capability to deplete phosphoproteins in a PBMCs protein lysate compared to the affinity micro-column. On the other hand, 1D gel electrophoresis analysis of dephosphorylated PBMCs protein lysate revealed a relatively higher unspecificity for the lanthanum ions compared to affinity micro-column. Filamin-A, coronin 1A, pyruvate kinase isozymes M1/M2 and ficolin-1 were considerably more expressed in the lanthanum phosphoprotein pattern. Interestingly, ficolin-1 had not been reported in 2DE-PBMCs proteome profiles so far. Conclusion: Our results describe the differences and the validity of phosphoprotein enrichment methods and provide two successful and complementary approaches for the 2DE phosphoproteome analysis of PBMCs.
Clear cell renal cell carcinoma (ccRC) is the most common malignant neoplasm of the kidney and belongs to the few human tumors known to develop from mutations of the VHL tumor suppressor gene. VHL germline mutations are associated with hereditary ccRCs in VHL disease. However, somatic VHL gene defects may also occur in sporadic ccRCs. In this study, we analyzed the frequency and the spectrum of VHL gene alterations in 35 Italian patients with sporadic renal cell carcinoma (RC). Tumor-specific intragenic VHL pathogenic mutations were detected in 38% (11/29) of the ccRC patients and 33% (2/6) of the patients with other types of RC. One novel 18-bp in-tandem duplication and 4 previously unreported nucleotide changes in the VHL gene were described. Microsatellite analysis showed loss of heterozygosity for at least 1 informative marker in 43% (9/21) of the ccRCs and 50% (3/6) of the non-ccRCs; 5 of the 13 tumors (38%) harboring VHL gene alterations also had loss of heterozygosity for at least 1 microsatellite marker. Our results confirm that somatic inactivation of the VHL gene may play a pivotal role in the tumorigenesis of sporadic ccRCs in Italian patients and suggests that mutation analysis of the VHL gene may be helpful for discriminating sporadic, VHL-gene-related ccRCs from those related to VHL disease.
L'invenzione riguarda una linea cellulare tumorale di utilizzo nel campo della terapia e/o profilassi cellulare.
The present invention relates to a renal carcinoma cell line capable of activating the immune system in an antigen-specific manner. According to a further aspect, the invention also includes derivatives of the cell line that maintain said activation capacity. The invention also comprises a method for targeting and activating immune system cells against cells of clear cell renal carcinoma. Said method comprises the co-incubation of isolated immune system cells (dendritic cells, CD4*, CD8* lymphocytes etc.) with cells of the RCC BA85#21 line in accordance with the invention in a suitable culture medium, for a time sufficient to obtain antigen specific cells.
Condividi questo sito sui social