Effettua una ricerca
Bruno Di Jeso
Ruolo
Professore Ordinario
Organizzazione
Università del Salento
Dipartimento
Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali
Area Scientifica
Area 06 - Scienze mediche
Settore Scientifico Disciplinare
MED/04 - Patologia Generale
Settore ERC 1° livello
LS - Life sciences
Settore ERC 2° livello
LS4 Physiology, Pathophysiology and Endocrinology: Organ physiology, pathophysiology, endocrinology, metabolism, ageing, tumorigenesis, cardiovascular disease, metabolic syndrome
Settore ERC 3° livello
LS4_6 Cancer and its biological basis
The endoplasmic reticulum (ER) is a complex and multifunctional organelle. It is the intracellular compartment of protein folding, a complex task, both facilitated and monitored by ER folding enzymes and molecular chaperones. The ER is also a stress-sensing organelle. It senses stress caused by disequilibrium between ER load and folding capacity and responds by activating signal transduction pathways, known as unfolded protein response (UPR). Three major classes of transducer are known, inositol-requiring protein-1 (IRE1), activating transcription factor-6 (ATF6), and protein kinase RNA (PKR)-like endoplasmic reticulum kinase (PERK), which sense with their endoluminal domain the state of protein folding, although the exact mechanism(s) involved is not entirely clear. Depending on whether the homeostatic response of the UPR is successful in restoring an equilibrium between ER load and protein folding or not, the two possible outcomes of the UPR so far considered have been life or death. Indeed, recent efforts have been devoted to understand the life/death switch mechanisms. However, recent data suggest that what appears to be a pure binary decision may in fact be more complex, and survival may be achieved at the expenses of luxury cell functions, such as expression of differentiation genes.
Thyroglobulin (Tg; precursor for thyroid hormone synthesis) is a large secreted glycoprotein comprised of upstream regions I-II-III, followed by the ~570 residue cholinesterase-like (ChEL) domain. ChEL has two identified functions: 1) homodimerization, and 2) binding to I-II-III that facilitates I-II-III oxidative maturation required for intracellular protein transport. Like its homologs in the acetylcholinesterase (AChE) family, ChEL possesses two carboxyl-terminal alpha helices. We find that a Tg-AChE chimera (swapping AChE in place of ChEL) allows for dimerization with monomeric AChE, proving exposure of the carboxyl-terminal helices within the larger context of Tg. Further, we establish that perturbing trans-helical interaction blocks homodimerization of the Tg ChEL domain. Additionally, ChEL can associate with neuroligins (a related family of cholinesterase-like proteins), demonstrating potential for Tg cross-dimerization between non-identical partners. Indeed, when mutant rdw-Tg (Tg-G2298R, defective for protein secretion) is co-expressed with wild-type Tg, the two proteins cross-dimerize and secretion of rdw-Tg is partially restored. Moreover, we find that AChE and soluble neuroligins also can bind to the upstream Tg regions I-II-III; however, they cannot rescue secretion because they cannot facilitate oxidative maturation of I-II-III. The data highlight that specific properties of distinct Tg ChEL mutants may result in distinct patterns of Tg monomer folding, cross-dimerization with wild-type Tg, and variable secretion behavior in heterozygous patients.
Resin-based dental restorative materials release residual monomers that may affect the vitality of pulp cells. The purpose of this study was to evaluate the cytotoxic effect of two light-cured restorative materials with and without bis-GMA resin, respectively (Clearfil Majesty Posterior and Clearfil Majesty Flow) and a self-curing one (Clearfil DC Core Automix) when applied to the fibroblast cell line NIH-3T3. Samples of the materials were light-cured and placed directly in contact to cells for 24, 48, 72 and 96 h. Cytotoxicity was evaluated by measuring cell death by flow cytometry, cell proliferation by proliferation curves analysis and morphological changes by optical microscopy analysis. All the composite materials tested caused a decrease in cell proliferation, albeit at different degrees. However, only Clearfil DC Core Automix induced cell death, very likely by increasing apoptosis. Morphological alteration of treated cells was also evident, particularly in the Clearfil DC Core Automix-treated cells. The different cytotoxic effects of dental composites should be considered when selecting an appropriate resin-based dental restorative material for operative restorations.
Objectives: Endometrial cancer is the most common malignancy of the female genital tract. However, in spite of a huge advance in our understanding of endometrial cancer biology, therapeutic modalities haven't significantly changed over the past 40 years. The activation of the Unfolded Protein Response (UPR) and GRP78 increase following Endoplasmic Reticulum (ER) stress have been recently identified as mechanisms favoring growth, invasion and resistance to therapy of different types of cancer. However, a possible role of ER stress and GRP78 in endometrial cancer has never been investigated. Methods: Tissue specimens from normal and neoplastic endometrium were analyzed for the expression of the ER stress markers GRP78, ATF6 and CHOP by Real-Time RT-PCR. In addition, GRP78 protein expression and localization were evaluated by Western blot and immunohistochemistry, respectively. The effect of GRP78 knock down on cell growth of Ishikawa cells was analyzed by proliferation curve analysis. Results: In this analysis, the expression levels of GRP78, ATF6 and CHOP mRNAs were significantly increased in specimens of endometrioid endometrial carcinomas. GRP78 and ATF6 protein expression levels were also increased in specimens of endometrial adenocarcinomas. GRP78 knock down caused a decrease of Ishikawa cells' growth. Conclusions: The increased expression of ER stress markers in endometrioid endometrial carcinomas suggests a role for ER stress, the UPR and, possibly, GRP78 in endometrial cancer. Whether these mechanisms have a substantial function in the pathogenesis of malignant transformation of human endometrium is still under investigation in our laboratory. © 2012 Elsevier Inc. All rights reserved.
OBJECTIVES: Endometrial cancer is the most common malignancy of the female genital tract. However, in spite of a huge advance in our understanding of endometrial cancer biology, therapeutic modalities haven't significantly changed over the past 40years. The activation of the Unfolded Protein Response (UPR) and GRP78 increase following Endoplasmic Reticulum (ER) stress have been recently identified as mechanisms favoring growth, invasion and resistance to therapy of different types of cancer. However, a possible role of ER stress and GRP78 in endometrial cancer has never been investigated. METHODS: Tissue specimens from normal and neoplastic endometrium were analyzed for the expression of the ER stress markers GRP78, ATF6 and CHOP by Real-Time RT-PCR. In addition, GRP78 protein expression and localization were evaluated by Western blot and immunohistochemistry, respectively. The effect of GRP78 knock down on cell growth of Ishikawa cells was analyzed by proliferation curve analysis. RESULTS: In this analysis, the expression levels of GRP78, ATF6 and CHOP mRNAs were significantly increased in specimens of endometrioid endometrial carcinomas. GRP78 and ATF6 protein expression levels were also increased in specimens of endometrial adenocarcinomas. GRP78 knock down caused a decrease of Ishikawa cells' growth. CONCLUSIONS: The increased expression of ER stress markers in endometrioid endometrial carcinomas suggests a role for ER stress, the UPR and, possibly, GRP78 in endometrial cancer. Whether these mechanisms have a substantial function in the pathogenesis of malignant transformation of human endometrium is still under investigation in our laboratory.
We recently reported that, in thyroid cells, ER stress triggered by thapsigargin or tunicamycin, two well known ER stressing agents, induced dedifferentiation and loss of the epithelial phenotype in rat thyroid cells. In this study we sought to evaluate if, in thyroid cells, ER stress could affect MHC class I expression and the possible implications of this effect in the alteration of function of natural killer cells, suggesting a role in thyroid pathology. In both, a human line of fetal thyroid cells (TAD-2 cells) and primary cultures of human thyroid cells, thapsigargin and tunicamicin triggered ER stress evaluated by BiP mRNA levels and XBP-1 splicing. In both cell types, TAD-2 cell line and primary cultures, major histocompatibility complex class I (MHC-I) plasmamembrane expression was significantly reduced by ER stress. This effect was accompanied by signs of natural killer activation. Thus, natural killer cells dramatically increased IFN-γ production and markedly increased their cytotoxicity against thyroid cells. Together, these data indicate that ER stress induces a decrease of MHC class I surface expression in thyroid cells, resulting in reduced natural killer-cell self-tolerance.
AIMS/HYPOTHESIS: Glucosamine, generated during hyperglycaemia, causes insulin resistance in different cells. Here we sought to evaluate the possible role of endoplasmic reticulum (ER) stress in the induction of insulin resistance by glucosamine in skeletal muscle cells. METHODS: Real-time RT-PCR analysis, 2-deoxy-D: -glucose (2-DG) uptake and western blot analysis were carried out in rat and human muscle cell lines. RESULTS: In both rat and human myotubes, glucosamine treatment caused a significant increase in the expression of the ER stress markers immunoglobulin heavy chain-binding protein/glucose-regulated protein 78 kDa (BIP/GRP78 [also known as HSPA5]), X-box binding protein-1 (XBP1) and activating transcription factor 6 (ATF6). In addition, glucosamine impaired insulin-stimulated 2-DG uptake in both rat and human myotubes. Interestingly, pretreatment of both rat and human myotubes with the chemical chaperones 4-phenylbutyric acid (PBA) or tauroursodeoxycholic acid (TUDCA), completely prevented the effect of glucosamine on both ER stress induction and insulin-induced glucose uptake. In both rat and human myotubes, glucosamine treatment reduced mRNA and protein levels of the gene encoding GLUT4 and mRNA levels of the main regulators of the gene encoding GLUT4 (myocyte enhancer factor 2 a [MEF2A] and peroxisome proliferator-activated receptor-gamma coactivator 1alpha [PGC1alpha]). Again, PBA or TUDCA pretreatment prevented glucosamine-induced inhibition of GLUT4 (also known as SLC2A4), MEF2A and PGC1alpha (also known as PPARGC1A). Finally, we showed that overproduction of ATF6 is sufficient to inhibit the expression of genes GLUT4, MEF2A and PGC1alpha and that ATF6 silencing with a specific small interfering RNA is sufficient to completely prevent glucosamine-induced inhibition of GLUT4, MEF2A and PGC1alpha in skeletal muscle cells. CONCLUSIONS/INTERPRETATION: In this work we show that glucosamine-induced ER stress causes insulin resistance in both human and rat myotubes and impairs GLUT4 production and insulin-induced glucose uptake via an ATF6-dependent decrease of the GLUT4 regulators MEF2A and PGC1alpha.
Recent studies have indicated that endoplasmic reticulum stress, the unfolded protein response activation and altered GRP78 expression can play an important role in a variety of tumors development and progression. Very recently we reported for the first time that GRP78 is increased in endometrial tumors. However, whether GRP78 could play a role in the growth and/or invasiveness of endometrial cancer cells is still unknown. Here we report that the silencing of GRP78 expression affects both cell growth and invasiveness of Ishikawa and AN3CA cells, analyzed by the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and transwell migration assay, respectively. At variance with Ishikawa cells, AN3CA cells showed, besides an endoplasmic reticulum, also a plasma membrane GRP78 localization, evidenced by both immunofluorescence and cell membrane biotinylation experiments. Intriguingly, flow cytometry experiments showed that the treatment with a specific antibody targeting GRP78 C-terminal domain caused apoptosis in AN3CA but not in Ishikawa cells. Induction of apoptosis in AN3CA cells was not mediated by the p53 pathway activation but was rather associated to reduced AKT phosphorylation. Interestingly, immunofluorescence analysis evidenced that endometrioid adenocarcinoma tissues displayed, similarly to AN3CA cells, also a GRP78 plasma membrane localization. These data suggest that GRP78 and its plasma membrane localization, might play a role in endometrial cancer development and progression and might constitute a novel target for the treatment of endometrial cancer.
AIMS/HYPOTHESIS: Beta cell failure is caused by loss of cell mass, mostly by apoptosis, but also by simple dysfunction (decline of glucose-stimulated insulin secretion, downregulation of specific gene expression). Apoptosis and dysfunction are caused, at least in part, by lipoglucotoxicity. The mechanisms implicated are oxidative stress, increase in the hexosamine biosynthetic pathway (HBP) flux and endoplasmic reticulum (ER) stress. Oxidative stress plays a role in glucotoxicity-induced beta cell dedifferentiation, while glucotoxicity-induced ER stress has been mostly linked to beta cell apoptosis. We sought to clarify whether ER stress caused by increased HBP flux participates in a dedifferentiating response of beta cells, in the absence of relevant apoptosis. METHODS: We used INS-1E cells and murine islets. We analysed the unfolded protein response and the expression profile of beta cells by real-time RT-PCR and western blot. The signal transmission pathway elicited by ER stress was investigated by real-time RT-PCR and immunofluorescence. RESULTS: Glucosamine and high glucose induced ER stress, but did not decrease cell viability in INS-1E cells. ER stress caused dedifferentiation of beta cells, as shown by downregulation of beta cell markers and of the transcription factor, pancreatic and duodenal homeobox 1. Glucose-stimulated insulin secretion was inhibited. These effects were prevented by the chemical chaperone, 4-phenyl butyric acid. The extracellular signal-regulated kinase (ERK) signal transmission pathway was implicated, since its inhibition prevented the effects induced by glucosamine and high glucose. CONCLUSIONS/INTERPRETATION: Glucotoxic ER stress dedifferentiates beta cells, in the absence of apoptosis, through a transcriptional response. These effects are mediated by the activation of ERK1/2.
In vertebrates, the thyroglobulin (Tg) gene product must be exported to the lumen of thyroid follicles for thyroid hormone synthesis. In toto, Tg is composed of multiple type-1 repeats connected by linker and hinge (altogether considered as "region I," nearly 1,200 residues); regions II-III (~720 residues); and cholinesterase-like (ChEL) domain (~570 residues). Regions II-III and ChEL rapidly acquire competence for secretion, yet regions I-II-III require 20 min to become a partially mature disulfide isomer; stabilization of a fully oxidized form requires ChEL. Transition from partially mature to mature Tg occurs as a discrete "jump" in mobility by nonreducing SDS-PAGE, suggesting formation of at most a few final pairings of Cys residues that may be separated by significant intervening primary sequence. Using two independent approaches, we have investigated which portion of Tg is engaged in this late stage of its maturation. First, we demonstrate that this event is linked to oxidation involving region I. Introduction of the Tg-C1245R mutation in the hinge (identical to that causing human goitrous hypothyroidism) inhibits this maturation, although the Cys-1245 partner remains unidentified. Second, we find that Tg truncated after its fourth type-1 repeat is a fully independent secretory protein. Together, the data indicate that final acquisition of secretory competence includes conformational maturation in the interval between linker and hinge segments of region I.
Struttura e metabolismo delle lipoproteine plasmatiche, Enzimi e trasportatori chiave del metabolismo delle lipoproteine, Recettori delle lipoproteine, Metabolismo delle lipoproteine contenenti apoB, Biogenesi delle HDL e trasporto inverso del colesterolo, Principali malattie del metabolismo lipidico.
Adipocyte differentiation is critical in obesity. By controlling new adipocyte recruitment, adipogenesis contrasts adipocyte hypertrophy and its adverse consequences, such as insulin resistance. Contrasting data are present in literature on the effect of endoplasmic reticulum (ER) stress and subsequent unfolded protein response (UPR) on adipocyte differentiation, being reported to be either necessary or inhibitory. In this study, we sought to clarify the effect of ER stress and UPR on adipocyte differentiation. We have used two different cell lines, the widely used pre-adipocyte 3T3-L1 cells and a murine multipotent mesenchymal cell line, W20-17 cells. A strong ER stress activator, thapsigargin, and a pathologically relevant inducer of ER stress, glucosamine (GlcN), induced ER stress and UPR above those occurring in the absence of perturbation and inhibited adipocyte differentiation. Very low concentrations of 4-phenyl butyric acid (PBA, a chemical chaperone) inhibited only the overactivation of ER stress and UPR elicited by GlcN, leaving unaltered the part physiologically activated during differentiation, and reversed the inhibitory effect of GlcN on differentiation. In addition, GlcN stimulated proinflammatory cytokine release and PBA prevented these effects. An inhibitor of NF-kB also reversed the effects of GlcN on cytokine release. These results indicate that while ER stress and UPR activation is "physiologically" activated during adipocyte differentiation, the "pathologic" part of ER stress activation, secondary to a glucotoxic insult, inhibits differentiation. In addition, such a metabolic insult, causes a shift of the preadipocyte/adipocyte population towards a proinflammatory phenotype.
The small scaffold protein PED/PEA-15 is involved in several different physiologic and pathologic processes, such as cell proliferation and survival, diabetes and cancer. PED/PEA-15 exerts an anti-apoptotic function due to its ability to interfere with both extrinsic and intrinsic apoptotic pathways in different cell types. Recent evidence shows that mice overexpressing PED/PEA-15 present larger pancreatic islets and increased beta-cells mass. In the present work we investigated PED/PEA-15 role in hydrogen peroxide-induced apoptosis in Ins-1E beta-cells. In pancreatic islets isolated from Tg(PED/PEA-15) mice hydrogen peroxide-induced DNA fragmentation was lower compared to WT islets. TUNEL analysis showed that PED/PEA-15 overexpression increases the viability of Ins-1E beta-cells and enhances their resistance to apoptosis induced by hydrogen peroxide exposure. The activity of caspase-3 and the cleavage of PARP-1 were markedly reduced in Ins-1E cells overexpressing PED/PEA-15 (Ins-1E(PED/PEA-15)). In parallel, we observed a decrease of the mRNA levels of pro-apoptotic genes Bcl-xS and Bad. In contrast, the expression of the anti-apoptotic gene Bcl-xL was enhanced. Accordingly, DNA fragmentation was higher in control cells compared to Ins-1E(PED/PEA-15) cells. Interestingly, the preincubation with propranolol, an inhibitor of the pathway of PLD-1, a known interactor of PED/PEA-15, responsible for its deleterious effects on glucose tolerance, abolishes the antiapoptotic effects of PED/PEA-15 overexpression in Ins-1E beta-cells. The same results have been obtained by inhibiting PED/PEA-15 interaction with PLD-1 in Ins-1E(PED/PEA-15). These results show that PED/PEA-15 overexpression is sufficient to block hydrogen peroxide-induced apoptosis in Ins-1E cells through a PLD-1 mediated mechanism.
Thyroglobulin (Tg) is a vertebrate secretory protein synthesized in the thyrocyte endoplasmic reticulum (ER) where it acquires N-linked glycosylation and conformational maturation (including formation of many disulfide bonds), leading to homodimerization. Its primary functions include iodide storage and thyroid hormonogenesis. Tg consists largely of repeating domains, and many tyrosyl residues in these domains become iodinated to form monoiodo- and diiodotyrosine, whereas only a small portion of Tg structure is dedicated to hormone formation. Interestingly, evolutionary ancestors, dependent upon thyroid hormone for development, synthesize thyroid hormones without the complete Tg protein architecture. Nevertheless, in all vertebrates, Tg follows a strict pattern of region I, II-III, and the Cholinesterase-Like (ChEL) domain. In vertebrates, Tg first undergoes intracellular transport through the secretory pathway, which requires the assistance of thyrocyte ER chaperones and oxidoreductases, as well as coordination of distinct regions of Tg, to achieve a native conformation. Curiously, regions II-III and ChEL behave as fully independent folding units that could function as successful secretory proteins by themselves. However, the large Tg region I (bearing the primary thyroxine-forming site) is incompetent by itself for intracellular transport, requiring the downstream regions II-III and ChEL to complete its folding. A combination of nonsense mutations, frameshift mutations, splice site mutations, and missense mutations in Tg occur spontaneously to cause congenital hypothyroidism and thyroidal ER stress. These Tg mutants are unable to achieve a native conformation within the ER, interfering with the efficiency of Tg maturation and export to the thyroid follicle lumen for iodide storage and hormonogenesis.
Background: Secretory proteins acquire their native three-dimensional conformation through repeated brief interactions with ER chaperones and oxidoreductases. Results: We have captured and defined previously-unidentified disulfide adducts of newly-synthesized thyroglobulin with ERp72 and CaBP1/P5. Conclusion: Multiple oxidoreductases simultaneously engage thyroglobulin during its early folding in the ER. Significance: Distinct chaperone/oxidoreductase partners coordinately engage this multi-domain secretory protein to promote its advancement to the native state.
Activation of the Ras-Raf–extracellular signal–regulated kinase (ERK) pathway causes not only proliferation and suppression of apoptosis but also the antioncogenic response of senescence. How these contrasting effects are reconciled to achieve cell transformation and cancer formation by this pathway is poorly understood. In a systemof two-step carcinogenesis (dedifferentiated PC EIA, transformed PC EIA–polyoma–middle T [PC EIA + Py] and PC EIA–v-raf [PC EIA + raf] cells], v-raf cooperated with EIA by virtue of a strong prosurvival effect, not elicited by Py–middle T, evident toward serum-deprivation– and H2O2-induced apoptosis. Apoptosis was detected by DNA fragmentation and annexin V staining. The prosurvival function of v-raf was, in part, mitogen-activated protein kinase/ERK kinase (MEK)– dependent, as shown by pharmacologicalMEK inhibition. TheMEK-dependent antiapoptotic effect of v-raf was exerted despite a lower level of P-ERK1/2 in EIA + raf cells with respect to EIA + Py/EIA cells, which was dependent on a high tyrosine phosphatase activity, as shown by orthovanadate blockade. An ERK1/2 tyrosine phosphatase was likely involved. The high tyrosine phosphatase activity was instrumental to the complete suppression of senescence, detected by senescence-associated β-galactosidase activity, because tyrosine phosphatase blockade induced senescence in EIA + raf but not in EIA + Py cells. High tyrosine phosphatase activity and evasion from senescence were confirmed in an anaplastic thyroid cancer cell line. Therefore, besides EIA, EIA + raf cells suppress senescence through a new mechanism, namely, phosphatase-mediated P-ERK1/2 inhibition, but, paradoxically, retain the oncogenic effects of the Raf-ERK pathway. We propose that the survival effect of Raf is not a function of absolute P-ERK1/2 levels at a given time but is rather dynamically dependent on greater variations after an apoptotic stimulus.
Condividi questo sito sui social