Effettua una ricerca
Donato Maria Creanza
Ruolo
Professore Associato
Organizzazione
Politecnico di Bari
Dipartimento
Dipartimento Interateneo di Fisica "Michelangelo Merlin"
Area Scientifica
Area 02 - Scienze fisiche
Settore Scientifico Disciplinare
FIS/01 - Fisica Sperimentale
Settore ERC 1° livello
PE - Physical sciences and engineering
Settore ERC 2° livello
PE2 Fundamental Constituents of Matter: Particle, nuclear, plasma, atomic, molecular, gas, and optical physics
Settore ERC 3° livello
PE2_2 Particle physics
We are pursuing scribe-cleave-passivate (SCP) technology of making "slim edge" sensors. Such sensors have only a minimal amount of inactive peripheral region, which benefits construction of large area tracker and imaging systems. Key application steps of this method are surface scribing, cleaving, and passivation of the resulting sidewall. We are working on developing both the technology and physical understanding of the processed devices performance. In this paper we begin by reviewing the manufacturing options of SCP technology. Then we show new results regarding the technology automation and device physics performance. The latter includes charge collection efficiency near the edge and radiation hardness study. We also report on the status of devices processed at the request of the RD50 collaborators. (C) 2013 Elsevier B.V. All rights resented.
In current particle physics experiments, silicon strip detectors are widely used as part of the inner tracking layers. A foreseeable large-scale application for such detectors consists of the luminosity upgrade of the Large Hadron Collider (LHC), the super-LHC or sLHC, where silicon detectors with extreme radiation hardness are required. The mission statement of the CERN RD50 Collaboration is the development of radiation-hard semiconductor devices for very high luminosity colliders. As a consequence, the aim of the R&D programme presented in this article is to develop silicon particle detectors able to operate at sLHC conditions. Research has progressed in different areas, such as defect characterisation, defect engineering and full detector systems. Recent results from these areas will be presented. This includes in particular an improved understanding of the macroscopic changes of the effective doping concentration based on identification of the individual microscopic defects, results from irradiation with a mix of different particle types as expected for the sLHC, and the observation of charge multiplication effects in heavily irradiated detectors at very high bias voltages. (C) 2011 Elsevier B.V. All rights reserved.
Measurements of the jet energy calibration and transverse momentum resolution in CMS are presented, performed with a data sample collected in proton-proton collisions at a centre-of-mass energy of 7TeV, corresponding to an integrated luminosity of 36p(-1). The transverse momentum balance in dijet and gamma/Z+jets events is used to measure the jet energy response in the CMS detector, as well as the transverse momentum resolution. The results are presented for three different methods to reconstruct jets: a calorimeter-based approach, the "Jet-Plus-Track" approach, which improves the measurement of calorimeter jets by exploiting the associated tracks, and the "Particle Flow" approach, which attempts to reconstruct individually each particle in the event, prior to the jet clustering, based on information from all relevant subdetectors.
The energy flow, dE/d eta, is studied at large pseudorapidities in proton-proton collisions at the LHC, for centre-of-mass energies of 0.9 and 7 TeV. The measurements are made using the CMS detector in the pseudorapidity range 3:15 < vertical bar eta vertical bar < 4.9, for both minimum-bias events and events with at least two high-momentum jets. The data are compared to various pp Monte Carlo event generators whose theoretical models and input parameter values are sensitive to the energy-flow measurements. Inclusion of multiple-parton interactions in the Monte Carlo event generators is found to improve the description of the energy-flow measurements.
Electroweak measurements performed with data taken at the electron positron collider LEP at CERN from 1995 to 2000 are reported. The combined data set considered in this report corresponds to a total luminosity of about 3 fb(-1) collected by the four LEP experiments ALEPH, DELPHI, 13 and OPAL, at centre-of-mass energies ranging from 130 GeV to 209 GeV. Combining the published results of the four LEP experiments, the measurements include total and differential cross-sections in photon-pair, fermion-pair and four-fermion production, the latter resulting from both double-resonant WW and ZZ production as well as singly resonant production. Total and differential cross-sections are measured precisely, providing a stringent test of the Standard Model at centre-of-mass energies never explored before in electron positron collisions. Final-state interaction effects in four-fermion production, such as those arising from colour reconnection and Bose Einstein correlations between the two W decay systems arising in WW production, are searched for and upper limits on the strength of possible effects are obtained. The data are used to determine fundamental properties of the W boson and the electroweak theory. Among others, the mass and width of the W boson, m(w) and Gamma(w), the branching fraction of W decays to hadrons, B(W -> had), and the trilinear gauge-boson self-couplings g(1)(Z), K-gamma and lambda(gamma), are determined to be: m(w) = 80.376 +/- 0.033 GeV Gamma(w) = 2.195 +/- 0.083 GeV B(W -> had) = 67.41 +/- 0.27% g(1)(Z) = 0.984(-0.020)(+0.018) K-gamma - 0.982 +/- 0.042 lambda(gamma) = 0.022 +/- 0.019. (C) 2013 Elsevier B.V. All rights reserved.
The t t-bar charge asymmetry is measured in events containing a charged lepton (electron or muon) and at least four jets, one of which is identified as originating from b-quark hadronization. The analyzed dataset corresponds to an integrated luminosity of 5.0 inverse femtobarns collected with the CMS detector at the LHC. An inclusive and three differential measurements of the t t-bar charge asymmetry as a function of rapidity, transverse momentum, and invariant mass of the t t-bar system are presented. The measured inclusive t t-bar charge asymmetry is A(C) = 0.004 +/- 0.010 (stat.) +/- 0.011 (syst.). This result and the three differential measurements are consistent with zero asymmetry as well as with the predictions of the standard model.
The transverse energy (E-T) in Pb-Pb collisions at 2.76 TeV nucleon-nucleon center-of-mass energy (root s(NN)) has been measured over a broad range of pseudorapidity (eta) and collision centrality by using the CMS detector at the LHC. The transverse energy density per unit pseudorapidity (dE(T)/d eta) increases faster with collision energy than the charged particle multiplicity. This implies that the mean energy per particle is increasing with collision energy. At all pseudorapidities, the transverse energy per participating nucleon increases with the centrality of the collision. The ratio of transverse energy per unit pseudorapidity in peripheral to central collisions varies significantly as the pseudorapidity increases from eta = 0 to vertical bar eta vertical bar = 5.0. For the 5% most central collisions, the energy density per unit volume is estimated to be about 14 GeV/fm(3) at a time of 1 fm/c after the collision. This is about 100 times larger than normal nuclear matter density and a factor of 2.6 times higher than the energy density reported at root s(NN) = 200 GeV at the Relativistic Heavy Ion Collider.
The B-s(0) differential production cross section is measured as functions of the transverse momentum and rapidity in pp collisions at root s = 7 TeV, using the B-s(0) -> J/psi phi decay, and compared with predictions based on perturbative QCD calculations at next-to-leading order. The data sample, collected by the CMS experiment at the LHC, corresponds to an integrated luminosity of 40 pb(-1). The B-s(0) is reconstructed from the decays J/psi -> mu+mu- and phi -> K+K-. The integrated B-s(0) cross section times B-s(0) -> J/psi phi branching fraction in the range 8 < p(T)(B) < 50 GeV/c and vertical bar y(B)vertical bar < 2.4 is measured to be 6.9 +/- 0.6 +/- 0.6 nb, where the first uncertainty is statistical and the second is systematic.
The first measurement of the charged component of the underlying event using the novel "jet-area/median" approach is presented for proton-proton collisions at centre-of-mass energies of 0.9 and 7TeV. The data were recorded in 2010 with the CMS experiment at the LHC. A new observable, sensitive to soft particle production, is introduced and investigated inclusively and as a function of the event scale defined by the transverse momentum of the leading jet. Various phenomenological models are compared to data, with and without corrections for detector effects. None of the examined models describe the data satisfactorily.
A measurement of the differential cross section for the inclusive production of isolated prompt photons in proton-proton collisions at a center-of-mass energy of 7 TeV is presented. The data sample corresponds to an integrated luminosity of 36 pb(-1) recorded by the CMS detector at the LHC. The measurement covers the pseudorapidity range vertical bar eta vertical bar < 2.5 and the transverse energy range 25 < E-T < 400 GeV, corresponding to the kinematic region 0.007 < x(T) < 0.114. Photon candidates are identified with two complementary methods, one based on photon conversions in the silicon tracker and the other on isolated energy deposits in the electromagnetic calorimeter. The measured cross section is presented as a function of E-T in four pseudorapidity regions. The next-to-leading-order perturbative QCD calculations are consistent with the measured cross section.
A measurement of the t (t) over bar production cross section in proton-proton collisions at a centre-of-mass energy of 7 TeV has been performed at the LHC with the CMS detector. The analysis uses a data sample corresponding to an integrated luminosity of 36 pb(-1) and is based on the reconstruction of the final state with one isolated, high transverse-momentum electron or muon and three or more hadronic jets. The kinematic properties of the events are used to separate the t (t) over bar signal from W+jets and QCD multijet background events. The measured cross section is 173(-32)(+39) (stat. + syst.) pb, consistent with standard model expectations.
A search for pair-produced heavy vectorlike charge-2/3 quarks, T, in pp collisions at a center-of-mass energy of 7 TeV, is performed with the CMS detector at the LHC. Events consistent with the flavor-changing-neutral-current decay of a T quark to a top quark and a Z boson are selected by requiring two leptons from the Z-boson decay, as well as an additional isolated charged lepton. In a data sample corresponding to an integrated luminosity of 1.14 fb(-1), the number of observed events is found to be consistent with the standard model background prediction. Assuming a branching fraction of 100% for the decay T -> tZ, a T quark with a mass less than 475 GeV/c(2) is excluded at the 95% confidence level.
A measurement of the inclusive cross section for the process pp to b b-bar X to muon muon X' at sqrt(s) = 7 TeV is presented, based on a data sample corresponding to an integrated luminosity of 27.9 inverse picobarns collected by the CMS experiment at the LHC. By selecting pairs of muons each with pseudorapidity abs(eta)<2.1, the value of the cross section for pp to b b-bar X to muon muon X' is found to be 26.4 +/- 0.1 (stat.) +/- 2.4 (syst.) +/- 1.1 (lumi.) nb is obtained for muons with transverse momentum greater than 4 GeV, and 5.12 +/- 0.03 (stat.) +/- 0.48 (syst.) +/- 0.20 (lumi.) nb for transverse momenta greater than 6 GeV. These results are compared to QCD predictions at leading and next-to-leading orders.
A measurement of the underlying event (UE) activity in proton-proton collisions at a centre-of-mass energy of 7 TeV is performed using Drell--Yan events in a data sample corresponding to an integrated luminosity of 2.2 inverse femtobarns, collected by the CMS experiment at the LHC. The activity measured in the muonic final state (q q-bar to opposite sign muons) is corrected to the particle level and compared with the predictions of various Monte Carlo generators and hadronization models. The dependence of the UE activity on the dimuon invariant mass is well described by PYTHIA and HERWIG++ tunes derived from the leading jet/track approach, illustrating the universality of the UE activity. The UE activity is observed to be independent of the dimuon invariant mass in the region above 40 GeV, while a slow increase is observed with increasing transverse momentum of the dimuon system. The dependence of the UE activity on the transverse momentum of the dimuon system is accurately described by MADGRAPH, which simulates multiple hard emissions.
Isolated photon production is measured in proton-proton and lead-lead collisions at nucleon-nucleon centre-of-mass energies of 2.76 TeV in the pseudorapidity range vertical bar eta vertical bar < 1.44 and transverse energies E-T between 20 and 80 GeV with the CMS detector at the LHC. The measured ET spectra are found to be in good agreement with next-to-leading-order perturbative QCD predictions. The ratio of PbPb to pp isolated photon E-T-differential yields, scaled by the number of incoherent nucleon-nucleon collisions, is consistent with unity for all PbPb reaction centralities. (C) 2012 CERN. Published by Elsevier BM. All rights reserved.
Results are reported from a search for supersymmetry in pp collisions at a center-of-mass energy of 8 TeV, based on events with a single isolated lepton (electron or muon) and multiple jets, at least two of which are identified as b jets. The data sample corresponds to an integrated luminosity of 19.3 fb(-1) recorded by the CMS experiment at the LHC in 2012. The search is motivated by supersymmetric models that involve strong-production processes and cascade decays of new particles. The resulting final states contain multiple jets as well as missing transverse momentum from weakly interacting particles. The event yields, observed across several kinematic regions, are consistent with the expectations from standard model processes. The results are interpreted in the context of simplified supersymmetric scenarios with pair production of gluinos, where each gluino decays to a top quark-antiquark pair and the lightest neutralino. For the case of decays via virtual top squarks, gluinos with a mass smaller than 1.26 TeV are excluded for low neutralino masses. (C) 2014 The Authors. Published by Elsevier B.V.
A measurement of the Lambda(0)(b) lifetime using the decay Lambda(0)(b) -> J/psi Lambda in protonproton collisions at root s = 7TeV is presented. The data set, corresponding to an integrated luminosity of about 5 fb(-1), was recorded with the CMS experiment at the Large Hadron Collider using triggers that selected dimuon events in the J/psi mass region. The Lambda(0)(b) lifetime is measured to be 1.503 +/- 0.052 (stat.) +/- 0.031 (syst.) ps
The observation of a new b baryon via its strong decay into Xi(-)(b)pi(+) (plus charge conjugates) is reported. The measurement uses a data sample of pp collisions at root s = 7 TeV collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 5.3 fb(-1). The known Xi(-)(b) baryon is reconstructed via the decay chain Xi(-)(b) -> J/psi Xi(-) -> mu(+)mu(-)Lambda(0)pi(-), with Lambda(0) -> p pi(-). A peak is observed in the distribution of the difference between the mass of the Xi(-)(b)pi(+) system and the sum of the masses of the Xi(-)(b) and pi(+), with a significance exceeding 5 standard deviations. The mass difference of the peak is 14.84 +/- 0.74(stat) +/- 0.28(syst) MeV. The new state most likely corresponds to the J(P) = 3/2(+) companion of the Xi(b).
A search is performed in pp collisions at root s 7 TeV for exotic particles decaying via WZ to final states with electrons and muons. The data sample corresponds to an integrated luminosity of approximately 5 fb(-1). No significant excess is observed in the data above the expected standard model background. Upper bounds at 95% confidence level are set on the production cross section of the W' boson described by the sequential standard model and on the W' WZ coupling. W' bosons with masses below 1143 GeV are excluded. Limits are also set in the context of low-scale technicolor models, under a range of assumptions concerning the model parameters.
The dimuon invariant mass spectrum is searched in the range between 5.5 and 14 GeV for a light pseudoscalar Higgs boson a, predicted in a number of new physics models, including the next-to-minimal supersymmetric standard model. The data sample used in the search corresponds to an integrated luminosity of 1: 3 fb(-1) collected in pp collisions at root s = 7 TeV with the CMS detector at the LHC. No excess is observed above the background predictions and upper limits are set on the cross section times branching fraction sigma x B(pp -> a -> mu(+) mu(-)) in the range of 1.5-7.5 pb. These results improve on existing bounds on the ab (b) over bar coupling for m(a) < m(gamma(1s)) and are the first significant limits for m(a) > m(gamma(3S)). Constraints on the supersymmetric parameter space are presented in the context of the next-to-minimal model.
A search for new physics is performed using isolated same-sign dileptons with at least two b-quark jets in the final state. Results are based on a 4.98 fb-1 sample of protonproton collisions at a centre-of-mass energy of 7TeV collected by the CMS detector. No excess above the standard model background is observed. Upper limits at 95% confidence level are set on the number of events from non-standard-model sources. These limits are used to set constraints on a number of new physics models. Information on acceptance and efficiencies are also provided so that the results can be used to confront additional models in an approximate way.
A search for new physics is performed in events with two same-sign isolated leptons, hadronic jets, and missing transverse energy in the final state. The analysis is based on a data sample corresponding to an integrated luminosity of 4.98 inverse femtobarns produced in pp collisions at a center-of-mass energy of 7 TeV collected by the CMS experiment at the LHC. This constitutes a factor of 140 increase in integrated luminosity over previously published results. The observed yields agree with the standard model predictions and thus no evidence for new physics is found. The observations are used to set upper limits on possible new physics contributions and to constrain supersymmetric models. To facilitate the interpretation of the data in a broader range of new physics scenarios, information on the event selection, detector response, and efficiencies is provided.
Results are presented from a search for the pair production of first- and second-generation scalar leptoquarks in proton-proton collisions at root s = 7 TeV. The data sample corresponds to an integrated luminosity of 5.0 fb(-1), collected by the CMS detector at the LHC. The search signatures involve either two charged leptons of the same flavor (electrons or muons) and at least two jets or a single charged lepton (electron or muon), missing transverse energy, and at least two jets. If the branching fraction of the leptoquark decay into a charged lepton and a quark is assumed to be beta = 1, leptoquark pair production is excluded at the 95% confidence level for masses below 830 GeV and 840 GeV for the first and second generations, respectively. For beta = 0.5, masses below 640 GeV and 650 GeV are excluded. These limits are the most stringent to date.
A search is presented for physics beyond the standard model (BSM) in events with a Z boson, jets, and missing transverse energy (E-T(miss)) This signature is motivated by BSM physics scenarios, including supersymmetry. The study is performed using a sample of proton-proton collision data collected at root s = 7 TeV with the CMS experiment at the LHC, corresponding to an integrated luminosity of 4.98 fb(-1). The contributions from the dominant standard model backgrounds are estimated from data using two complementary strategies, the jet-Z balance technique and a method based on modeling E-T(miss) with data control samples. In the absence of evidence for BSM physics, we set limits on the non-standard-model contributions to event yields in the signal regions and interpret the results in the context of simplified model spectra. Additional information is provided to facilitate tests of other BSM physics models. (C) 2012 CERN. Published by Elsevier B.V. All rights reserved.
A search for new physics is performed using events with isolated same-sign leptons and at least two bottom-quark jets in the final state. Results are based on a sample of proton-proton collisions collected at a center-of-mass energy of 8TeV with the CMS detector and corresponding to an integrated luminosity of 10.5 fb(-1). No excess above the standard model background is observed. Upper limits are set on the number of events from non-standard-model sources and are used to constrain a number of new physics models. Information on acceptance and efficiencies is also provided so that the results can be used to confront an even broader class of new physics models.
The 2011 dataset of the CMS experiment, consisting of an integrated luminosity of 4.98 fb(-1) of pp collisions at root s = 7 TeV, enables expanded searches for direct electroweak pair production of charginos and neutralinos in supersymmetric models as well as their analogs in other models of new physics. Searches sensitive to such processes, with decays to final states that contain two or more leptons, are presented. Final states with three leptons, with a same-sign lepton pair, and with an opposite-sign lepton pair in conjunction with two jets, are examined. No excesses above the standard model expectations are observed. The results are used in conjunction with previous results on four-lepton final states to exclude a range of chargino and neutralino masses from approximately 200 to 500 GeV in the context of models that assume large branching fractions of charginos and neutralinos to leptons and vector bosons.
A model-independent search for the production of heavy resonances decaying into top-antitop quark pairs is presented. The search is based on events containing one lepton (muon or electron) and at least two jets selected from data samples corresponding to an integrated luminosity of 4.4-5.0 fb(-1) collected in pp collisions at root s = 7 TeV. Results are presented from the combination of two dedicated searches optimized for boosted production and production at threshold. No excess of events is observed over the expected yield from the standard model processes. Topcolor Z' bosons with narrow (wide) width are excluded at 95% confidence level for masses below 1.49 (2.04) TeV and an upper limit of 0.3 (1.3) pb or lower is set on the production cross section times branching fraction for resonance masses above 1 TeV. Kaluza-Klein excitations of a gluon with masses below 1.82 TeV (at 95% confidence level) in the Randall-Sundrum model are also excluded, and an upper limit of 0.7 pb or lower is set on the production cross section times branching fraction for resonance masses above 1 TeV.
A search for supersymmetry in final states with jets and missing transverse energy is performed in pp collisions at a centre-of-mass energy of root s = 7 TeV. The data sample corresponds to an integrated luminosity of 4.98 fb(-1) collected by the CMS experiment at the LHC. In this search, a dimensionless kinematic variable, alpha(T), is used as the main discriminator between events with genuine and misreconstructed missing transverse energy. The search is performed in a signal region that is binned in the scalar sum of the transverse energy of jets and the number of jets identified as originating from a bottom quark. No excess of events over the standard model expectation is found. Exclusion limits are set in the parameter space of the constrained minimal supersymmetric extension of the standard model, and also in simplified models, with a special emphasis on compressed spectra and third-generation scenarios.
A search for the standard model Higgs boson produced in association with a top-quark pair is presented using data samples corresponding to an integrated luminosity of 5.0 fb(-1) (5.1 fb-1) collected in pp collisions at the center-of-mass energy of 7 TeV (8 TeV). Events are considered where the top-quark pair decays to either one lepton+jets (t (t) over bar -> l nu q (q) over bar 'b (b) over bar) or dileptons (t (t) over bar -> l(+)nu l-nu b (b) over bar), being an electron or a muon. The search is optimized for the decay mode H -> b (b) over bar. The largest background to the t (t) over barH signal is top-quark pair production with additional jets. Artificial neural networks are used to discriminate between signal and background events. Combining the results from the 7 TeV and 8 TeV samples, the observed (expected) limit on the cross section for Higgs boson production in association with top-quark pairs for a Higgs boson mass of 125 GeV is 5.8 (5.2) times the standard model expectation.
Invariant mass spectra for jets reconstructed using the anti-k(T) and Cambridge-Aachen algorithms are studied for different jet "grooming" techniques in data corresponding to an integrated luminosity of 5 fb(-1), recorded with the CMS detector in proton-proton collisions at the LHC at a center-of-mass energy of 7 TeV. Leading-order QCD predictions for inclusive dijet and W/Z+jet production combined with parton-shower Monte Carlo models are found to agree overall with the data, and the agreement improves with the implementation of jet grooming methods used to distinguish merged jets of large transverse momentum from softer QCD gluon radiation.
A search for the Higgs boson produced in association with a W or Z boson in proton-proton collisions at a center-of-mass energy of 7 TeV is performed with the CMS detector at the LHC using the full 2011 data sample, from an integrated luminosity of 5 fb(-1). Higgs boson decay modes to tau tau and WW are explored by selecting events with three or four leptons in the final state. No excess above background expectations is observed, resulting in exclusion limits on the product of Higgs associated production cross section and decay branching fraction for Higgs boson masses between 110 and 200 GeV in these channels. Combining these results with other CMS associated production searches using the same dataset in the H -> gamma gamma and H -> b (b) over bar decay modes, the cross section for associated Higgs boson production 3.3 times the standard model expectation or larger is ruled out at the 95% confidence level for a Higgs boson mass of 125 GeV.
Condividi questo sito sui social