Structural, Morphological, and Chemical Properties of Cu/TiN Versus Cu Thin Layers for HEMT Backside Metallization
Abstract
The objective of this paper is to study the morphology, structure, and composition, as well as the thermal-induced morphological, structural, and chemical changes of copper(Cu)/titanium nitride(TiN) bilayers versus Cu single layers, deposited on silicon substrates for microelectronic applications. These characterizations aimed to assess the reliability of Cu metallization for local interconnect and to investigate the barrier capability of TiN against Cu diffusion into the silicon (Si) substrate. Moreover, this paper provides a fundamental study of the temperature-induced interactions between Cu and Si, intermediated by the presence of a thin TiN layer. Cu thin films were sputtered onto Si substrates, with and without the interposition of thin TiN layers, and were successively annealed at temperature as high as 600. C. Different nitrogen flux percentages in the sputtering mixture (Ar + N-2) were used for the deposition of the barriers. X-ray diffraction (XRD) analyses were carried out in order to study the structural evolution of the layers, before and after the annealing. Scanning electron microscopy (SEM) observations gave information about the surface and cross section morphology, and spatially resolved energy dispersive X-ray Spectroscopy (EDS) profiles provided chemical information about the cross-sectional distribution of the atomic species and their possible interdiffusion. The barrier efficacy has been demonstrated by comparing the morphological and chemical modifications of the annealed Cu layers, with and without the presence of the TiN layer, and their effects on the electrical properties of the Cu films.
Autore Pugliese
Tutti gli autori
-
Taurino A.; Signore M.A.; Catalano M.; Farella I.; Quaranta F.; Di Giulio M.; Vasanelli L.; Siciliano P.
Titolo volume/Rivista
IEEE transactions on device and materials reliability
Anno di pubblicazione
2014
ISSN
1530-4388
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social