Performance analysis of gesture recognition classifiers for building a human robot interface

Abstract

In this paper we present a natural humancomputer interface based on gesture recognition. The principal aimis to study how different personalized gestures, defined by users,can be represented in terms of features and can be modelled byclassification approaches in order to obtain the best performancesin gesture recognition. Ten different gestures involving themovement of the left arm are performed by different users.Different classification methodologies (SVM, HMM, NN, and DTW) arecompared and their performances and limitations are discussed. Anensemble of classifiers is proposed to produce more favorableresults compared to those of a single classifier system. Theproblems concerning different lengths of gesture executions,variability in their representations, generalization ability ofthe classifiers have been analyzed and a valuable insight inpossible recommendation is provided.


Tutti gli autori

  • T. D'Orazio; N. Mosca; R. Marani; G. Cicirelli

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2016

ISSN

Non Disponibile

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

Non Disponibile

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile