Performance analysis of gesture recognition classifiers for building a human robot interface
Abstract
In this paper we present a natural humancomputer interface based on gesture recognition. The principal aimis to study how different personalized gestures, defined by users,can be represented in terms of features and can be modelled byclassification approaches in order to obtain the best performancesin gesture recognition. Ten different gestures involving themovement of the left arm are performed by different users.Different classification methodologies (SVM, HMM, NN, and DTW) arecompared and their performances and limitations are discussed. Anensemble of classifiers is proposed to produce more favorableresults compared to those of a single classifier system. Theproblems concerning different lengths of gesture executions,variability in their representations, generalization ability ofthe classifiers have been analyzed and a valuable insight inpossible recommendation is provided.
Autore Pugliese
Tutti gli autori
-
T. D'Orazio; N. Mosca; R. Marani; G. Cicirelli
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2016
ISSN
Non Disponibile
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social