LIDAR and stereo imagery integration for safe navigation in outdoor settings
Abstract
Environment awareness through advanced sensing systems is a major requirement for a mobile robot to operate safely, particularly when the environment is unstructured, as in an outdoor setting. In this paper, a multi-sensory approach is proposed for automatic traversable ground detection using 3D range sensors. Specifically, two classifiers are presented, one based on laser data and one based on stereovision. Both classifiers rely on a self-learning scheme to detect the general class of ground and feature two main stages: an adaptive training stage and a classification stage. In the training stage, the classifier learns to associate geometric appearance of 3D data with class labels. Then, it makes predictions based on past observations. The output obtained from the single-sensor classifiers is statistically combined exploiting their individual advantages in order to reach an overall better performance than could be achieved by using each of them separately. Experimental results, obtained with a test bed platform operating in a rural environment, are presented to validate this approach, showing its effectiveness for autonomous safe navigation.
Autore Pugliese
Tutti gli autori
-
A. Milella; G. Reina; W. Halft; R. Worst
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2013
ISSN
Non Disponibile
ISBN
978-1-4799-0879-0
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social