Wind Power Forecasting Using Time Series Cluster Analysis

Abstract

The growing integration of wind turbines into the power grid can only be balanced with precise forecasts of upcoming energy productions. This information plays as basis for operation and management strategies for a reliable and economical integration into the power grid. A precise forecast needs to overcome problems of variable energy production caused by fluctuating weather conditions. In this paper, we define a data mining approach, in order to process a past set of the wind power measurements of a wind turbine and extract a robust prediction model. We resort to a time series clustering algorithm, in order to extract a compact, informative representation of the time series of wind power measurements in the past set. We use cluster prototypes for predicting upcoming wind powers of the turbine. We illustrate a case study with real data collected from a wind turbine installed in the Apulia region.


Tutti gli autori

  • APPICE A.;LANZA A.;MALERBA D.

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2014

ISSN

0302-9743

ISBN

978-3-319-11811-6


Numero di citazioni Wos

1

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

4

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile