Learning Strategies for Knowledge-base Updating in Online Signature Verification Systems

Abstract

Updating of reference information is a crucial task for automatic signature verification. In fact, signature characteristics vary in time and whatever approach is considered the effectiveness of a signature verification system strongly depends on the extent to which reference information is able to model the changeable characteristics of users’ signatures. This paper addresses the problem of knowledge-base updating in multi-expert signature verification sys-tems and introduces a new strategy which exploits the collective behavior of classifiers to select the most profitable samples for knowledge-base updating. The experimental tests, carried out using the SUSig database, demonstrate the effectiveness of the new strategy.


Tutti gli autori

  • IMPEDOVO D.;PIRLO G.

Titolo volume/Rivista

Non Disponibile


Anno di pubblicazione

2013

ISSN

0302-9743

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

1

Ultimo Aggiornamento Citazioni

Non Disponibile


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile