Causal Information Approach to Partial Conditioning in Multivariate Data Sets
Abstract
When evaluating causal influence from one time series to another in a multivariate data set it is necessary to take into account the conditioning effect of the other variables. In the presence of many variables and possibly of a reduced number of samples, full conditioning can lead to computational and numerical problems. In this paper, we address the problem of partial conditioning to a limited subset of variables, in the framework of information theory. The proposed approach is tested on simulated data sets and on an example of intracranial EEG recording from an epileptic subject. We show that, in many instances, conditioning on a small number of variables, chosen as the most informative ones for the driver node, leads to results very close to those obtained with a fully multivariate analysis and even better in the presence of a small number of samples. This is particularly relevant when the pattern of causalities is sparse.
Autore Pugliese
Tutti gli autori
-
STRAMAGLIA S.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2012
ISSN
1748-670X
ISBN
Non Disponibile
Numero di citazioni Wos
27
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
37
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social