The Calderón–Zygmund property for quasilinear divergence form equations over Reifenberg flat domains

Abstract

The results by Palagachev (2009) [3] regarding global Holder continuity for the weak solutions to quasilinear divergence form elliptic equations are generalized to the case of nonlinear terms with optimal growths with respect to the unknown function and its gradient. Moreover, the principal coefficients are discontinuous with discontinuity measured in terms of small BMO norms and the underlying domain is supposed to have fractal boundary satisfying a condition of Reifenberg flatness. The results are extended to the case of parabolic operators as well.


Tutti gli autori

  • PALAGACHEV D.K. , SOFTOVA L.G

Titolo volume/Rivista

NONLINEAR ANALYSIS


Anno di pubblicazione

2011

ISSN

0362-546X

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

22

Ultimo Aggiornamento Citazioni

2017-04-22 03:20:59


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile