The Calderón–Zygmund property for quasilinear divergence form equations over Reifenberg flat domains
Abstract
The results by Palagachev (2009) [3] regarding global Holder continuity for the weak solutions to quasilinear divergence form elliptic equations are generalized to the case of nonlinear terms with optimal growths with respect to the unknown function and its gradient. Moreover, the principal coefficients are discontinuous with discontinuity measured in terms of small BMO norms and the underlying domain is supposed to have fractal boundary satisfying a condition of Reifenberg flatness. The results are extended to the case of parabolic operators as well.
Autore Pugliese
Tutti gli autori
-
PALAGACHEV D.K. , SOFTOVA L.G
Titolo volume/Rivista
NONLINEAR ANALYSIS
Anno di pubblicazione
2011
ISSN
0362-546X
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
22
Ultimo Aggiornamento Citazioni
2017-04-22 03:20:59
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social