Geometric numerical integrators based on the magnus expansion in bifurcation problems for non-linear elastic solids

Abstract

We illustrate a procedure based on the Magnus expansion for studying mechanical problems which lead to non-autonomous systems of linear ODE’s. The effectiveness of the Magnus method is enlighten by the analysis of a bifurcation problem in the framework of three-dimensional non-linear elasticity. In particular, for an isotropic compressible elastic tube subject to an azimuthal shear primary deformation we study the possibility of axially periodic twist-like bifurcations. The approximate matricant of the resulting differential problem and the first singular value of the bifurcating load corresponding to a non-trivial bifurcation are determined by employing a simplified version of the Magnus method, characterized by a truncation of the Magnus series after the second term.


Tutti gli autori

  • Castellano, A. , Foti, P. , Fraddosio, A. , Marzano, S. , Piccioni, M. D.

Titolo volume/Rivista

FRATTURA E INTEGRITÀ STRUTTURALE


Anno di pubblicazione

2014

ISSN

1971-8993

ISBN

Non Disponibile


Numero di citazioni Wos

Nessuna citazione

Ultimo Aggiornamento Citazioni

Non Disponibile


Numero di citazioni Scopus

Non Disponibile

0

Ultimo Aggiornamento Citazioni

2017-04-22 03:20:59


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile