Translating process mining results into intelligible business information
Abstract
Most business processes are today rooted into an informa-tion system recording operational events in log files. Process Mining algorithms exploit this information to discover and qualify differences between observed and modelled process. However, the output of these algorithms are not clearly con-nected with business properties. Our work faces these lim-itations by proposing an approach for calibrating Process Mining results based on the Business Rules adopted by an organisation. The general idea relates on applying Process Mining algorithms on subsequent refinements of the event log, flltering process executions based on Business Rules. This way we are able to associate these results with specific characterisations of the process, as entailed by the corre-sponding Business Rules. This approach is confronted to a real world scenario using data provided by an Italian man-ufacturing company.
Autore Pugliese
Tutti gli autori
-
Ceravolo P. , Azzini A. , Damiani E. , Lazoi M. , Marra M. , Corallo A.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2016
ISSN
Non Disponibile
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
3
Ultimo Aggiornamento Citazioni
22/04/2018
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social