Sentiment Analysis for Government: An Optimized Approach
Abstract
This paper describes a Sentiment Analysis (SA) method to analyze tweets polarity and to enable government to describe quantitatively the opinion of active users on social networks with respect to the topics of interest to the Public Administration. We propose an optimized approach employing a document-level and a dataset-level supervised machine learning classifier to provide accurate results in both individual and aggregated sentiment classification. The aim of this work is also to identify the types of features that allow to obtain the most accurate sentiment classification for a dataset of Italian tweets in the context of a Public Administration event, also taking into account the size of the training set. This work uses a dataset of 1,700 Italian tweets relating to the public event of “Lecce 2019 – European Capital of Culture”.
Autore Pugliese
Tutti gli autori
-
Corallo A. , Fortunato L. , Matera M. , Alessi M. , Camillo' A. , Chetta V. , Giangreco E. , Storelli D.S.
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2015
ISSN
Non Disponibile
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
0
Ultimo Aggiornamento Citazioni
22/04/2018
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social