On the observability of path and cycle graphs

Abstract

In this paper we investigate the observability properties of a network system, running a Laplacian based average consensus algorithm, when the communication graph is a path or a cycle. More in detail, we provide necessary and sufficient conditions, based on simple algebraic rules from number theory, to characterize all and only the nodes from which the network system is observable. Interesting immediate corollaries of our results are: (i) a path graph is observable from any single node if and only if the number of nodes of the graph is a power of two, n = 2^i, i ∈ N, and (ii) a cycle is observable from any pair of observation nodes if and only if n is a prime number. For any set of observation nodes, we provide a closed form expression for the unobservable eigenvalues and for the eigenvectors of the unobservable subspace.


Tutti gli autori

  • Parlangeli G. , Notarstefano G.

Titolo volume/Rivista

PROCEEDINGS OF THE IEEE CONFERENCE ON DECISION & CONTROL


Anno di pubblicazione

2010

ISSN

0743-1546

ISBN

Non Disponibile


Numero di citazioni Wos

3

Ultimo Aggiornamento Citazioni

27/04/2018


Numero di citazioni Scopus

13

Ultimo Aggiornamento Citazioni

26/04/2018


Settori ERC

Non Disponibile

Codici ASJC

Non Disponibile