On the observability of path and cycle graphs
Abstract
In this paper we investigate the observability properties of a network system, running a Laplacian based average consensus algorithm, when the communication graph is a path or a cycle. More in detail, we provide necessary and sufficient conditions, based on simple algebraic rules from number theory, to characterize all and only the nodes from which the network system is observable. Interesting immediate corollaries of our results are: (i) a path graph is observable from any single node if and only if the number of nodes of the graph is a power of two, n = 2^i, i ∈ N, and (ii) a cycle is observable from any pair of observation nodes if and only if n is a prime number. For any set of observation nodes, we provide a closed form expression for the unobservable eigenvalues and for the eigenvectors of the unobservable subspace.
Autore Pugliese
Tutti gli autori
-
Parlangeli G. , Notarstefano G.
Titolo volume/Rivista
PROCEEDINGS OF THE IEEE CONFERENCE ON DECISION & CONTROL
Anno di pubblicazione
2010
ISSN
0743-1546
ISBN
Non Disponibile
Numero di citazioni Wos
3
Ultimo Aggiornamento Citazioni
27/04/2018
Numero di citazioni Scopus
13
Ultimo Aggiornamento Citazioni
26/04/2018
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social