Harmonic Vector Fields: Variational Principles and Differential Geometry
Abstract
The main object in this monograph are harmonic vector fields on Riemannian manifolds. Let (M,g) be an n-dimensional Riemannian manifold, and S(M) be its tangent sphere bundle, where S(M) is endowed with a Riemannian metric G_s (the Sasaki metric) associated to the Riemannian metric g on M. Thus for a smooth unit tangent field X:M→S(M) from (M,g) into (S(M),G_s), we can consider the Dirichlet energy E(X)=1/2∫_M ∥dX∥2 dv_g. A harmonic vector field is a critical point of E(X) for any smooth 1-parameter variation of X through unit tangent vector fields. In terms of the Euler-Lagrange equation, a harmonic vector field is a smooth solution of the nonlinear elliptic PDE system ΔgX=∥∇X∥^2 X, where Δ_g is the rough Laplacian. Harmonic vector fields are not necessarily harmonic maps except when the curvature condition trace_g {R(∇⋅X,X)⋅}=0 is satisfied. The resulting theory of harmonic vector fields is similar in many respects to the more consolidated theory of harmonic maps yet presents new and intriguing aspects captured in a rapidly growing specific literature. The monograph (over 500 pages) is self-contained in the field of harmonic vector fields, and consists of eight chapters, as follows: (1) Geometry of the tangent bundle, (2) Harmonic vector fields, (3) Harmonicity and stability, (4) Harmonicity and contact metric structures, (5) Harmonicity with respect to g-natural metrics, (6) The energy of sections, (7) Harmonic vector fields in CR geometry, and (8) Lorentz geometry and harmonic vector fields.
Autore Pugliese
Tutti gli autori
-
S. Dragomir , D. Perrone
Titolo volume/Rivista
Non Disponibile
Anno di pubblicazione
2011
ISSN
Non Disponibile
ISBN
Non Disponibile
Numero di citazioni Wos
Nessuna citazione
Ultimo Aggiornamento Citazioni
Non Disponibile
Numero di citazioni Scopus
Non Disponibile
Ultimo Aggiornamento Citazioni
Non Disponibile
Settori ERC
Non Disponibile
Codici ASJC
Non Disponibile
Condividi questo sito sui social