Effettua una ricerca
Sabata Pierno
Ruolo
Professore Associato
Organizzazione
Università degli Studi di Bari Aldo Moro
Dipartimento
DIPARTIMENTO DI FARMACIA-SCIENZE DEL FARMACO
Area Scientifica
AREA 05 - Scienze biologiche
Settore Scientifico Disciplinare
BIO/14 - Farmacologia
Settore ERC 1° livello
Non Disponibile
Settore ERC 2° livello
Non Disponibile
Settore ERC 3° livello
Non Disponibile
Age-related skeletal muscle decline is characterized by the modification of sarcolemma ion channels important to sustain fiber excitability and to prevent metabolic dysfunction. Also, calcium homeostasis and contractile function are impaired. In the aim to understand whether these modifications are related to oxidative damage and can be reverted by antioxidant treatment, we examined the effects of in vivo treatment with an waste water polyphenolic mixture (LACHI MIX HT) supplied by LACHIFARMA S.r.l. Italy containing hydroxytirosol HT), gallic acid, and homovanillic acid on the skeletal muscles of 27-month-old rats. After 6-week treatment, we found an improvement of chloride ClC-1 channel conductance, pivotal for membrane electrical stability, and of ATP-dependent potassium channel activity, important in coupling excitability with fiber metabolism. Both of them were analyzed using electrophysiological techniques. The treatment also restored the resting cytosolic calcium concentration, the sarcoplasmic reticulum calcium release, and the mechanical threshold for contraction, an index of excitation–contraction coupling mechanism. Muscle weight and blood creatine kinase levels were preserved in LACHI MIX HT-treated aged rats. The antioxidant activity of LACHI MIX HT was confirmed by the reduction of malondialdehyde levels in the brain of the LACHI MIX HT-treated aged rats. In comparison, the administration of purified HT was less effective on all the parameters studied. Although muscle function was not completely recovered, the present study provides evidence of the beneficial effects of LACHIMIX HT, a natural compound, to ameliorate skeletal muscle functional decline due to aging-associated oxidative stress.
Age-related skeletal muscle decline is characterized by the modification of sarcolemma ion channels important to sustain fiber excitability and to prevent metabolic dysfunction. Also, calcium homeostasis and contractile function are impaired. In the aim to understand whether these modifications are related to oxidative damage and can be reverted by antioxidant treatment, we examined the effects of in vivo treatment with an waste water polyphenolic mixture (LACHI MIX HT) supplied by LACHIFARMA S.r.l. Italy containing hydroxytirosol (HT), gallic acid, and homovanillic acid on the skeletal muscles of 27-month-old rats. After 6-week treatment, we found an improvement of chloride ClC-1 channel conductance, pivotal for membrane electrical stability, and of ATP-dependent potassium channel activity, important in coupling excitability with fiber metabolism. Both of them were analyzed using electrophysiological techniques. The treatment also restored the resting cytosolic calcium concentration, the sarcoplasmic reticulum calcium release, and the mechanical threshold for contraction, an index of excitation-contraction coupling mechanism. Muscle weight and blood creatine kinase levels were preserved in LACHI MIX HT-treated aged rats. The antioxidant activity of LACHI MIX HT was confirmed by the reduction of malondialdehyde levels in the brain of the LACHI MIX HT-treated aged rats. In comparison, the administration of purified HT was less effective on all the parameters studied. Although muscle function was not completely recovered, the present study provides evidence of the beneficial effects of LACHI MIX HT, a natural compound, to ameliorate skeletal muscle functional decline due to aging-associated oxidative stress.
Angiotensin II (ANG II) plays a role in muscle wasting and remodeling; however, little evidence shows its direct effects on specific muscle functions. We presently investigated the acute in vitro effects of ANG II on resting ionic conductance and calcium homeostasis of mouse extensor digitorum longus (EDL) muscle fibers, based on previous findings that in vivo inhibition of ANG II counteracts the impairment of macroscopic ClC-1 chloride channel conductance (gCl) in the mdx mouse model of muscular dystrophy. By means of intracellular microelectrode recordings we found that ANG II reduced gCl in the nanomolar range and in a concentration-dependent manner (EC50 = 0.06 μM) meanwhile increasing potassium conductance (gK). Both effects were inhibited by the ANG II receptors type 1 (AT1)-receptor antagonist losartan and the protein kinase C inhibitor chelerythrine; no antagonism was observed with the AT2 antagonist PD123,319. The scavenger of reactive oxygen species (ROS) N-acetyl cysteine and the NADPH-oxidase (NOX) inhibitor apocynin also antagonized ANG II effects on resting ionic conductances; the ANG II-dependent gK increase was blocked by iberiotoxin, an inhibitor of calcium-activated potassium channels. ANG II also lowered the threshold for myofiber and muscle contraction. Both ANG II and the AT1 agonist L162,313 increased the intracellular calcium transients, measured by fura-2, with a two-step pattern. These latter effects were not observed in the presence of losartan and of the phospholipase C inhibitor U73122 and the in absence of extracellular calcium, disclosing a Gq-mediated calcium entry mechanism. The data show for the first time that the AT1-mediated ANG II pathway, also involving NOX and ROS, directly modulates ion channels and calcium homeostasis in adult myofibers.
Oxidative stress was proposed as a trigger of muscle impairment in various muscle diseases. The hindlimb-unloaded (HU) rodent is a model of disuse inducing atrophy and slow-to-fast transition of postural muscles. Here, mice unloaded for 14 days were chronically treated with the selective antioxidant trolox. After HU, atrophy was more pronounced in the slow-twitch soleus muscle (Sol) than in the fast-twitch gastrocnemius and tibialis anterior muscles, and was absent in extensor digitorum longus muscle. In accord with the phenotype transition, HU Sol showed a reduced expression of myosin heavy chain type 2A (MHC-2A) and increase in MHC-2X and MHC-2B isoforms. In parallel, HU Sol displayed an increased sarcolemma chloride conductance related to an increased expression of ClC-1 channels, changes in excitability parameters, a positive shift of the mechanical threshold, and a decrease of the resting cytosolic calcium concentration. Moreover, the level of lipoperoxidation increased proportionally to the degree of atrophy of each muscle type. As expected, trolox treatment fully prevented oxidative stress in HU mice. Atrophy was not prevented but the drug significantly attenuated Sol phenotypic transition and excitability changes. Trolox treatment had no effect on control mice. These results suggest possible benefits of antioxidants in protecting muscle against disuse.
Muscle disuse produces severe atrophy and a slow-to-fast phenotype transition in the postural Soleus (Sol) muscle of rodents. Antioxidants, amino-acids and growth factors were ineffective to ameliorate muscle atrophy. Here we evaluate the effects of nandrolone (ND), an anabolic steroid, on mouse skeletal muscle atrophy induced by hindlimb unloading (HU). Mice were pre-treated for 2-weeks before HU and during the 2-weeks of HU. Muscle weight and total protein content were reduced in HU mice and a restoration of these parameters was found in ND-treated HU mice. The analysis of gene expression by real-time PCR demonstrates an increase of MuRF-1 during HU but minor involvement of other catabolic pathways. However, ND did not affect MuRF-1 expression. The evaluation of anabolic pathways showed no change in mTOR and eIF2-kinase mRNA expression, but the protein expression of the eukaryotic initiation factor eIF2 was reduced during HU and restored by ND. Moreover we found an involvement of regenerative pathways, since the increase of MyoD observed after HU suggests the promotion of myogenic stem cell differentiation in response to atrophy. At the same time, Notch-1 expression was down-regulated. Interestingly, the ND treatment prevented changes in MyoD and Notch-1 expression. On the contrary, there was no evidence for an effect of ND on the change of muscle phenotype induced by HU, since no effect of treatment was observed on the resting gCl, restCa and contractile properties in Sol muscle. Accordingly, PGC1α and myosin heavy chain expression, indexes of the phenotype transition, were not restored in ND-treated HU mice. We hypothesize that ND is unable to directly affect the phenotype transition when the specialized motor unit firing pattern of stimulation is lacking. Nevertheless, through stimulation of protein synthesis, ND preserves protein content and muscle weight, which may result advantageous to the affected skeletal muscle for functional recovery.
TheorexigenicandanaboliceffectsinducedbyghrelinandthesyntheticGHsecretagogues(GHSs) are thought to positively contribute to therapeutic approaches and the adjunct treatment of a number of diseases associated with muscle wasting such as cachexia and sarcopenia. However, manyquestionsaboutthepotentialutilityandsafetyofGHSsinboththerapyandskeletalmuscle functionremainunanswered.Byusingfura-2cytofluorimetrictechnique,wedeterminedtheacute effectsofghrelin,aswellasofpeptidylandnonpeptidylsyntheticGHSsoncalciumhomeostasis, a critical biomarker of muscle function, in isolated tendon-to-tendon male rat skeletal muscle fibers.ThesyntheticnonpeptidylGHSs,butnotpeptidylghrelinandhexarelin,wereabletosignificantlyincreaserestingcytosoliccalcium[Ca2]i.ThenonpeptidylGHS-induced[Ca2] iincrease was independent of GHS-receptor 1a but was antagonized by both thapsigargin/caffeine and cyclosporineA,indicatingtheinvolvementofthesarcoplasmicreticulumandmitochondria.EvaluationoftheeffectsofapseudopeptidylGHSandanonpeptidylantagonistoftheGHS-receptor 1a together with a drug-modeling study suggest the conclusion that the lipophilic nonpeptidyl structureofthetestedcompoundsisthekeychemicalfeaturecrucialfortheGHS-inducedcalcium alterationsintheskeletalmuscle.Thus,syntheticGHSscanhavedifferenteffectsonskeletalmuscle fibersdependingontheirmolecularstructures.Thecalciumhomeostasisdysregulationspecifically induced by the nonpeptidyl GHSs used in this study could potentially counteract the beneficial effects associated with these drugs in the treatment of muscle wasting of cachexia- or other age-related disorders.
Although the sodium channel blocker, mexiletine, is the first choice drug in myotonia, some myotonic patients remain unsatisfied due to contraindications, lack of tolerability, or incomplete response. More therapeutic options are thus needed for myotonic patients, which require clinical trials based on solid preclinical data. In previous structure-activity relationship studies, we identified two newly-synthesized derivatives of tocainide, To040 and To042, with greatly enhanced potency and use-dependent behavior in inhibiting sodium currents in frog skeletal muscle fibers. The current study was performed to verify their potential as antimyotonic agents. Patch-clamp experiments show that both compounds, especially To042, are greatly more potent and use-dependent blockers of human skeletal muscle hNav1.4 channels compared to tocainide and mexiletine. Reduced effects on F1586C hNav1.4 mutant suggest that the compounds bind to the local anesthetic receptor, but that the increased hindrance and lipophilia of the N-substituent may further strengthen drug-receptor interaction and use-dependence. Compared to mexiletine, To042 was 120 times more potent to block hNav1.4 channels in a myotonia-like cellular condition and 100 times more potent to improve muscle stiffness in vivo in a previously-validated rat model of myotonia. To explore toxicological profile, To042 was tested on hERG potassium currents, motor coordination using rotarod, and C2C12 cell line for cytotoxicity. All these experiments suggest a satisfactory therapeutic index for To042. This study shows that, owing to a huge use-dependent block of sodium channels, To042 is a promising candidate drug for myotonia and possibly other membrane excitability disorders, warranting further preclinical and human studies.
Abstract Two-dimensional proteomic maps of soleus (Sol), a slow oxidative muscle, and gastrocnemius (Gas), a fast glycolytic muscle of control mice (CTRL), of mice hindlimb unloaded for 14 days (HU mice) and of HU mice treated with trolox (HU-TRO), a selective and potent antioxidant, were compared. The proteomic analysis identified a large number of differentially expressed proteins in a pool of approximately 800 proteins in both muscles. The protein pattern of Sol and Gas adapted very differently to hindlimb unloading. The most interesting adaptations related to the cellular defense systems against oxidative stress and energy metabolism. In HU Sol, the antioxidant defense systems and heat shock proteins were downregulated, and protein oxidation index and lipid peroxidation were higher compared with CTRL Sol. In contrast, in HU Gas the antioxidant defense systems were upregulated, and protein oxidation index and lipid peroxidation were normal. Notably, both Sol and Gas muscles and their muscle fibres were atrophic. Antioxidant administration prevented the impairment of the antioxidant defense systems in Sol and further enhanced them in Gas. Accordingly, it restored normal levels of protein oxidation and lipid peroxidation in Sol. However, muscle and muscle fibre atrophy was not prevented either in Sol or in Gas. A general downsizing of all energy production systems in Sol and a shift towards glycolytic metabolism in Gas were observed. Trolox administration did not prevent metabolic adaptations in either Sol or Gas. The present findings suggest that oxidative stress is not a major determinant of muscle atrophy in HU mice.
A pivotal role has been ascribed to oxidative stress in determining the imbalance between protein synthesis and degradation leading to muscle atrophy in many pathological conditions and in disuse. However, a large variability in disuse-induced alteration of redox homeostasis through muscles, models and species emerges from the literature. Whereas the causal role of oxidative stress appears well established in the mechanical ventilation model, findings are less compelling in the hindlimb unloaded mice and very limited in humans. The mere coexistence of muscle atrophy, indirect indexes of increased reactive oxygen species (ROS) production and impairment of antioxidant defence systems, in fact, does not unequivocally support a causal role of oxidative stress in the phenomenon. We hypothesise that in some muscles, models and species only, due to a large redox imbalance, the leading phenomena are activation of proteolysis and massive oxidation of proteins, which would become more susceptible to degradation. In other conditions, due to a lower extent and variable time course of ROS production, different ROS-dependent, but also -independent intracellular pathways might dominate determining the variable extent of atrophy and even dispensable protein oxidation. The ROS production and removal are complex and finely tuned phenomena. They are indeed important intracellular signals and redox balance maintains normal muscle homeostasis and can underlie either positive or negative adaptations to exercise. A precise approach to determine the levels of ROS in living cells in various conditions appears to be of paramount importance to define and support such hypotheses.
Statins and fibrates can cause myopathy. To further understand the causes of the damage we performed a proteome analysis in fast-twitch skeletal muscle of rats chronically treated with different hypolipidemic drugs. The proteomic maps were obtained from extensor digitorum longus (EDL) muscles of rats treated for 2-months with 10 mg/kg atorvastatin, 20 mg/kg fluvastatin, 60 mg/kg fenofibrate and control rats. The proteins differentially expressed were identified by mass spectrometry and further analyzed by immunoblot analysis. We found a significant modification in 40 out of 417 total spots analyzed in atorvastatin treated rats, 15 out of 436 total spots in fluvastatin treated rats and 21 out of 439 total spots in fenofibrate treated rats in comparison to controls. All treatments induced a general tendency to a down-regulation of protein expression; in particular, atorvastatin affected the protein pattern more extensively with respect to the other treatments. Energy production systems, both oxidative and glycolytic enzymes and creatine kinase, were down-regulated following atorvastatin administration, whereas fenofibrate determined mostly alterations in glycolytic enzymes and creatine kinase, oxidative enzymes being relatively spared. Additionally, all treatments resulted in some modifications of proteins involved in cellular defenses against oxidative stress, such as heat shock proteins, and of myofibrillar proteins. These results were confirmed by immunoblot analysis. In conclusions, the proteomic analysis showed that either statin or fibrate administration can modify the expression of proteins essential for skeletal muscle function suggesting potential mechanisms for statin myopathy.
Condividi questo sito sui social