Effettua una ricerca
Benedetta Lisena
Ruolo
Professore Associato
Organizzazione
Università degli Studi di Bari Aldo Moro
Dipartimento
DIPARTIMENTO DI MATEMATICA
Area Scientifica
AREA 01 - Scienze matematiche e informatiche
Settore Scientifico Disciplinare
MAT/05 - Analisi Matematica
Settore ERC 1° livello
Non Disponibile
Settore ERC 2° livello
Non Disponibile
Settore ERC 3° livello
Non Disponibile
This paper is concerned with the global attractivity for a system of semilinear parabolic equations with homogeous Dirichlet conditions, in a bounded Lipschitz domain.
In this paper, by using the Lyapunov method, we establish sufficient conditions for the global asymptotic stability of the positive periodic solution to diffusive Holling–Tanner predator–prey models with periodic coefficients and no-flux conditions.
By using Lyapunov functionals and some recent results replacing Halanay-type inequalities, new criteria are introduced for the global exponential stability of a class of cellular neural networks, with delay and periodic coefficients and inputs. In this way we obtain sufficient conditions, given in average form, for the networks to converge exponentially toward the unique periodic solution.
Condividi questo sito sui social