Effettua una ricerca
Angelo Cignarelli
Ruolo
Ricercatore a tempo determinato - tipo A
Organizzazione
Università degli Studi di Bari Aldo Moro
Dipartimento
DIPARTIMENTO DELL'EMERGENZA E DEI TRAPIANTI DI ORGANI
Area Scientifica
AREA 06 - Scienze mediche
Settore Scientifico Disciplinare
MED/13 - Endocrinologia
Settore ERC 1° livello
Non Disponibile
Settore ERC 2° livello
Non Disponibile
Settore ERC 3° livello
Non Disponibile
In obese subjects with obstructive sleep apnea (OSA), chronic intermittent hypoxia (CIH) may be linked to systemic and adipose tissue inflammation.
Diabetes and cancer are worldwide chronic diseases with a major impact on the quality and expectancy of life. Metabolic abnormalities observed during the onset and progression of diabetes may have a critical role on the initiation and progression of carcinogenesis. To date, there are no conclusive data on the mechanisms underlying the relationship between diabetes and any type of human cancer. However, recent evidence suggests that both hyperglycemia and hyperinsulinemia in diabetes could elicit cell damage responses, such as glucotoxicity, lipotoxicity and oxidative stress, which participate in the cell transformation process raising the risk of cancer development. In addition, clinical trials have revealed that several anti-diabetes therapies may potentially affect the risk of cancer though largely undefined mechanisms. In this review, we highlight epidemiological and pathophysiological aspects of diabetes, which may influence cancer initiation and progression.
Differences in the inherent properties of adipose tissue-derived stem cells (ASC) may contribute to the biological specificity of the subcutaneous (Sc) and visceral (V) adipose tissue depots. In this study, three distinct subpopulations of ASC, i.e. ASCSVF, ASCBottom, and ASCCeiling, were isolated from Sc and V fat biopsies of non-obese subjects, and their gene expression and functional characteristics were investigated. Genome-wide mRNA expression profiles of ASCSVF, ASCBottom and ASCCeiling from Sc fat were significantly different as compared to their homologous subsets of V-ASCs. Furthermore, ASCSVF, ASCCeiling and ASCBottom from the same fat depot were also distinct from each other. In this respect, both principal component analysis and hierarchical clusters analysis showed that ASCCeiling and ASCSVF shared a similar pattern of closely related genes, which was highly different when compared to that of ASCBottom. However, larger variations in gene expression were found in inter-depot than in intra-depot comparisons. The analysis of connectivity of genes differently expressed in each ASC subset demonstrated that, although there was some overlap, there was also a clear distinction between each Sc-ASC and their corresponding V-ASC subsets, and among ASCSVF, ASCBottom, and ASCCeiling of Sc or V fat depots in regard to networks associated with regulation of cell cycle, cell organization and development, inflammation and metabolic responses. Finally, the release of several cytokines and growth factors in the ASC cultured medium also showed both inter- and intra-depot differences. Thus, ASCCeiling and ASCBottom can be identified as two genetically and functionally heterogeneous ASC populations in addition to the ASCSVF, with ASCBottom showing the highest degree of unmatched gene expression. On the other hand, inter-depot seem to prevail over intra-depot differences in the ASC gene expression assets and network functions, contributing to the high degree of specificity of Sc and V adipose tissue in humans.
Glucagon-like peptide-1 and its analogs may preserve pancreatic beta-cell mass by promoting resistance to cytokine-mediated apoptosis. The mechanisms of TNFalpha-induced apoptosis and of its inhibition by exendin-4 were investigated in insulin-secreting cells. INS-1 and MIN6 insulinoma cells were exposed to 20 ng/ml TNFalpha, with or without pretreatment with 10 nm exendin-4. Treatment with TNFalpha increased c-Jun N-terminal protein kinase (JNK) phosphorylation 2-fold, reduced inhibitor-kappaBalpha (IkappaBalpha) protein content by 50%, induced opposite changes in caspase-3 and Bcl-2 protein content, and increased cellular apoptosis. Moreover, exposure to TNFalpha resulted in increased serine phosphorylation of both insulin receptor substrate (IRS)-1 and IRS-2 and reduced basal and insulin-induced Akt phosphorylation. However, in the presence of a JNK inhibitor, TNFalpha-induced apoptosis was diminished and serine phosphorylation of IRS proteins was prevented. When cells were pretreated with exendin-4, TNFalpha-induced JNK and IRS-1/2 serine phosphorylation was markedly reduced, Akt phosphorylation was increased, caspase-3 and Bcl-2 protein levels were restored to normal, and TNFalpha-induced apoptosis was inhibited by 50%. This was associated with a 2-fold increase in IRS-2 expression levels. A similar ability of exendin-4 to prevent TNFalpha-induced JNK phosphorylation was found in isolated pancreatic human islets. The inhibitory effect of exendin-4 on TNFalpha-induced JNK phosphorylation was abrogated in the presence of the protein kinase A inhibitor H89. In conclusion, JNK activation mediates TNFalpha-induced apoptosis and impairment of the IRS/Akt signaling pathway in insulin-secreting cells. By inhibiting JNK phosphorylation in a PKA-dependent manner, exendin-4 counteracts TNFalpha-mediated apoptosis and reverses the inhibitory events in the IRS/Akt pathway, resulting in promotion of cell survival.
AIMS/HYPOTHESIS: The mechanisms of the protective effects of exendin-4 on NEFA-induced beta cell apoptosis were investigated. METHODS: The effects of exendin-4 and palmitate were evaluated in human and murine islets, rat insulin-secreting INS-1E cells and murine glucagon-secreting alpha-TC1-6 cells. mRNA and protein expression/phosphorylation were measured by real-time RT-PCR and immunoblotting or immunofluorescence, respectively. Small interfering (si)RNAs for Ib1 and Gpr40 were used. Cell apoptosis was quantified by two independent assays. Insulin release was assessed with an insulin ELISA. RESULTS: Exposure of human and murine primary islets and INS-1E cells, but not alpha-TC1-6 cells, to exendin-4 inhibited phosphorylation of the stress kinases, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK), and prevented apoptosis in response to palmitate. Exendin-4 increased the protein content of islet-brain 1 (IB1), an endogenous JNK blocker; however, siRNA-mediated reduction of IB1 did not impair the ability of exendin-4 to inhibit JNK and prevent apoptosis. Exendin-4 reduced G-protein-coupled receptor 40 (GPR40) expression and inhibited palmitate-induced phosphorylation of mitogen-activated kinase kinase (MKK)4 and MKK7. The effects of exendin-4 were abrogated in the presence of the protein kinase A (PKA) inhibitors, H89 and KT5720. Knockdown of GPR40, as well as use of a specific GPR40 antagonist, resulted in diminished palmitate-induced JNK and p38 MAPK phosphorylation and apoptosis. Furthermore, inhibition of JNK and p38 MAPK activity prevented palmitate-induced apoptosis. CONCLUSIONS/INTERPRETATION: Exendin-4 counteracts the proapoptotic effects of palmitate in beta cells by reducing GPR40 expression and inhibiting MKK7- and MKK4-dependent phosphorylation of the stress kinases, JNK and p38 MAPK, in a PKA-dependent manner.
Stem cells are unique cells exhibiting self-renewing properties and the potential to differentiate into multiple specialised cell types. Totipotent or pluripotent stem cells are generally abundant in embryonic or fetal tissues, but the use of discarded embryos as sources of these cells raises challenging ethical problems. Adult stem cells can also differentiate into a wide variety of cell types. In particular, adult adipose tissue contains a pool of abundant and accessible multipotent stem cells, designated as adipose-derived stem cells (ASCs), that are able to replicate as undifferentiated cells, to develop as mature adipocytes and to differentiate into multiple other cell types along the mesenchymal lineage, including chondrocytes, myocytes and osteocytes, and also into cells of endodermal and neuroectodermal origin, including beta-cells and neurons, respectively. An impairment in the differentiation potential and biological functions of ASCs may contribute to the development of obesity and related comorbidities. In this review, we summarise different aspects of the ASCs with special reference to the isolation and characterisation of these cell populations, their relation to the biochemical features of the adipose tissue depot of origin and to the metabolic characteristics of the donor subject and discuss some prospective therapeutic applications.
Insulin is a major endocrine hormone also involved in the regulation of energy and lipid metabolism via the activation of an intracellular signaling cascade involving the insulin receptor (INSR), insulin receptor substrate (IRS) proteins, phosphoinositol 3-kinase (PI3K) and protein kinase B (AKT). Specifically, insulin regulates several aspects of the development and function of adipose tissue and stimulates the differentiation program of adipose cells. Insulin can activate its responses in adipose tissue through two INSR splicing variants: INSR-A, which is predominantly expressed in mesenchymal and less-differentiated cells and mainly linked to cell proliferation, and INSR-B, which is more expressed in terminally differentiated cells and coupled to metabolic effects. Recent findings have revealed that different distributions of INSR and an altered INSR-A:INSR-B ratio may contribute to metabolic abnormalities during the onset of insulin resistance and the progression to type 2 diabetes. In this review, we discuss the role of insulin and the INSR in the development and endocrine activity of adipose tissue and the pharmacological implications for the management of obesity and type 2 diabetes.
The small ubiquitin-like modifier-conjugating enzyme UBC9, involved in protein modification through covalent attachment of small ubiquitin-like modifier and other less defined mechanisms, has emerged as a key regulator of cell proliferation and differentiation. To explore the role of UBC9 in adipocyte differentiation, the UBC9 protein levels were examined in differentiating 3T3-L1 cells. UBC9 mRNA and protein levels were increased 2.5-fold at d 2 and then gradually declined to basal levels at d 8 of differentiation. In addition, UBC9 was expressed predominantly in the nucleus of preadipocytes but shifted to cytoplasmic compartments after d 4, after induction of differentiation. UBC9 knockdown was then achieved in differentiating 3T3-L1 preadipocytes using a specific small interfering RNA. Oil-Red-O staining demonstrated accumulation of large triglyceride droplets in approximately 90% of control cells, whereas lipid droplets were smaller and evident in only 30% of cells treated with the UBC9-specific small interfering RNA. CCAAT/enhancer-binding protein (C/EBP)-δ, peroxisome proliferator-activated receptor-γ, and C/EBPα mRNA levels were increased severalfold 2-6 d after induction of differentiation in control cells, whereas the expression of these transcription factors was significantly lower in the presence of UBC9 gene silencing. Adenovirus-mediated overexpression of a catalytically inactive mutant UBC9 protein in 3T3-L1 cells resulted in no changes in expression of adipogenic transcription factors and conversion to mature adipocytes as compared with control. In conclusion, UBC9 appears to play an important role in adipogenesis. The temporal profile of UBC9 induction and its ability to affect C/EBPδ mRNA induction support a role for this protein during early adipogenesis.
The widespread increase in life expectancy is accompanied by an increased prevalence of features of physical frailty. Signs and symptoms may include sarcopenia and osteopenia, reduced exercise capacity, and diminished sense of well-being. The pathogenesis of age-associated sarcopenia and osteopenia is multifactorial, and hormonal decline may be a contributing factor. Aging is associated with a progressive decrease in GH secretion, and more than 30% of elderly people have circulating IGF1 levels below the normal range found in the young. GH acts directly on target tissues, including skeletal muscle and bone among many others, but many effects are mediated indirectly by circulating (liver-derived) or locally produced IGF1. Aging is also associated with reduced insulin sensitivity which, in turn, may contribute to the impairment of IGF1 action. Recent experimental evidence suggests that besides the age-dependent decline in GH and IGF1 serum levels, the dysregulation of GH and IGF1 actions due to impairment of the post-receptor signaling machinery may contribute to the loss of muscle mass and osteopenia. This article will focus on the molecular mechanisms of impaired GH and IGF1 signaling and action in aging, and their role in the pathogenesis of sarcopenia and osteoporosis.
The p66(Shc) protein mediates oxidative stress-related injury in multiple tissues. Steatohepatitis is characterized by enhanced oxidative stress-mediated cell damage. The role of p66(Shc) in redox signaling was investigated in human liver cells and alcoholic steatohepatitis. HepG2 cells with overexpression of wild-type or mutant p66(Shc), with Ser(36) replacement by Ala, were obtained through infection with recombinant adenoviruses. Reactive oxygen species and oxidation-dependent DNA damage were assessed by measuring dihydroethidium oxidation and 8-hydroxy-2'-deoxyguanosine accumulation into DNA, respectively. mRNA and protein levels of signaling intermediates were evaluated in HepG2 cells and liver biopsies from control and alcoholic steatohepatitis subjects. Exposure to H2O2 increased reactive oxygen species and phosphorylation of p66(Shc) on Ser(36) in HepG2 cells. Overexpression of p66(Shc) promoted reactive oxygen species synthesis and oxidation-dependent DNA damage, which were further enhanced by H2O2. p66(Shc) activation also resulted in increased Erk-1/2, Akt and FoxO3a phosphorylation. Blocking of Erk-1/2 activation inhibited p66(Shc) phosphorylation on Ser(36). Increased p66Shc expression was associated with reduced mRNA levels of anti-oxidant molecules, such as NF-E2-related factor 2 and its target genes. In contrast, overexpression of the phosphorylation defective p66(Shc) Ala(36) mutant inhibited p66(Shc) signaling, enhanced anti-oxidant genes, and suppressed reactive oxygen species and oxidation-dependent DNA damage. Increased p66(Shc) protein levels and Akt phosphorylation were observed in liver biopsies from alcoholic steatohepatitis compared to control subjects.
Endothelial cells participate in inflammatory events leading to atherogenesis by regulating endothelial cell permeability via the expression of VE-Cadherin and β-catenin and leukocyte recruitment via the expression of E-Selectins and other adhesion molecules. The protein p66(Shc) acts as a sensor/inducer of oxidative stress and may promote vascular dysfunction. The objective of this study was to investigate the role of p66(Shc) in tumor necrosis factor TNFα-induced E-Selectin expression and function in human umbilical vein endothelial cells (HUVEC). Exposure of HUVEC to 50 ng/ml TNFα resulted in increased leukocyte transmigration through the endothelial monolayer and E-Selectin expression, in association with augmented phosphorylation of both p66(Shc) on Ser(36) and the stress kinase c-Jun NH2-terminal protein kinase (JNK)-1/2, and higher intracellular reactive oxygen species (ROS) levels. Overexpression of p66(Shc) in HUVEC resulted in enhanced p66(Shc) phosphorylation on Ser(36), increased ROS and E-Selectin levels, and amplified endothelial cell permeability and leukocyte transmigration through the HUVEC monolayer. Conversely, overexpression of a phosphorylation-defective p66(Shc) protein, in which Ser(36) was replaced by Ala, did not augment ROS and E-Selectin levels, nor modify cell permeability or leukocyte transmigration beyond those found in wild-type cells. Moreover, siRNA-mediated silencing of p66(Shc) resulted in marked reduction of E-Selectin expression and leukocyte transmigration. In conclusion, p66(Shc) acts as a novel intermediate in the TNFα pathway mediating endothelial dysfunction, and its action requires JNK-dependent phosphorylation of p66(Shc) on Ser(36).
Condividi questo sito sui social