Effettua una ricerca
Leonardo Mariella
Ruolo
Professore Associato
Organizzazione
Università del Salento
Dipartimento
Dipartimento di Scienze dell'Economia
Area Scientifica
Area 13 - Scienze economiche e statistiche
Settore Scientifico Disciplinare
SECS-S/01 - Statistica
Settore ERC 1° livello
PE - Physical sciences and engineering
Settore ERC 2° livello
PE1 Mathematics: All areas of mathematics, pure and applied, plus mathematical foundations of computer science, mathematical physics and statistics
Settore ERC 3° livello
PE1_13 Probability
Il presente testo propone una raccolta di casi di studio in cui appropriate metodologie e strumenti statistici sono utilizzati in ambito temporale (capitolo 1), spaziale (capitolo 2) e spazio-temporale (capitolo 3). In particolare, il capitolo 1 analizza l'evoluzione della distribuzione di probabilità delle vendite di un particolare prodotto, sfruttando le proprietà di cui godono tali processi stocastici, allo scopo di apportare eventuali "correttivi" ai movimenti di carico e di scarico sino a quel momento adottati. Nel capitolo 2, si stimano i consumi medi giornalieri di acqua per utenza nel Comune di riferimento, e si svolge un'indagine campionaria sulle utenze di AcQuedotto Pugliese (AQP), al fine di valutare i consumi medi di acqua per individuo, anche in relazione al numero di componenti del nucleo familiare. Il capitolo 3 "ricostruisce" l'intera distribuzione del rischio di fallimento di imprese localizzate nei 97 comuni della provincia di Lecce, il cui successo commerciale risulta palesemente condizionato da variazioni nella popolazione residente, allo scopo di individuare l'eventuale presenza di grandi centri commerciali che, sfruttando il loro appeal verso la clientela locale, creano vere e proprie zone interdette alle piccole aziende di prossimità.
In the analysis of spatial phenomena closely related to the local context, the probabilistic model is commonly used by Markov random field, a random function that analyzes the influence of the immediately surrounding area, by appropriate probability distributions. In particular, chapter 1 suggests some elements of novelty represented by a possible classification of particular neighbourhood structures and an interesting "extension" in the space of an algorithm, the Gibbs sampler, widely used in the theory of stochastic processes and appropriately adapted to simulating maps. In chapter 2 and chapter 3, we propose two new models for areal data, the Spatial Temporal Conditional Auto-Regressive (Spatial Temporal CAR) model and the Markov Conditional Auto-Regressive (Markov CAR) model, which allow to handle the spatial dependence between sites as well as the temporal dependence among the realizations, in the presence of measurements recorded at each spatial location in a time interval.
The E.U. directive 2004/39/EC, known as "Markets in Financial Instruments Directive" (MiFID), tried to build a financial market that was able to protect investors, differentiating them according to their degree of financial experience, and then to improve the mechanisms of governance investment firms. A basic role in this system is played by financial promoters. Through questionnaires submitted to potential investors (called "MiFID Questionnaires”), the financial promoters classify them according to their characteristics, but sometimes they can "induce" toward different behaviors in the field of financial investments. The financial promoters, on the other hand, qualify themselves through performance averages of its customers. The aim of this paper is to study the characteristics that can able the financial institution to distinguish a normal promoter by a "good promoter": personal characteristics or skills that can be related to the same promoter or to the savers which rely on him their own financial resources, or the interaction between the various actors. Such characteristics will be analyzed, using techniques such as multivariate classification analysis, in a sample of financial promoters operating within the territory of Bari, and who treated interests of thousands of investors.
Il presente testo propone un percorso applicativo dei principali strumenti e metodologie statistiche al controllo di gestione di un'impresa, avvalendosi di un bagaglio di esperienze maturato in ambito universitario e professionale. L'obiettivo è quello di offrire, sia un supporto didattico per l'insegnamento di Statistica Aziendale, che una guida pratica utilizzabile in azienda o nell’esercizio della libera professione.
The aim of this note is to highlight the importance of statistical-economic forecasting models for the deployment of innovative services through modern communication tools. We will analyse some communication tools and, in particular, the following: the communication trough the mass media, the interpersonal communication and the communication "through word of mouth". After having analysed the means of communication, we will measure the influence that consumers will experience in their purchasing decisions through the use of economic-statistical models In the current landscape, in the companies, the importance of innovation strategies assumes a growing importance, so the ability to model the cost-effectiveness is essential. Among all the suitable models, the model of F. Bass (1969) is efficient for measuring the effectiveness of the communication tools used for the promotion of innovative products. The model is widely used by companies for their quantitative analysis of the sales deriving from the innovative products put on the market and it has proven to effectively support the commercial management of the companies in planning and programming of sales. The Bass model is a considerable tool for measuring the diffusion process of innovation of a product among the potential customers. Another important contribution is offered by the model of information dissemination developed by Rogers (1983) that is based on the Gaussian distribution, where the curve is the frequency of consumers buying a product over time. If can be detected the cumulative number of buyers, the result is a S form pattern (sigmoid). Rogers argues that the curve of purchase is normally distributed because of a learning effect due to the interpersonal interaction existing in the social system. The number of buyers increases as soon as the process of interpersonal influence acts on those who are not buyers and this leads Rogers to identify the diffusion process essentially with a communicative nature.
Condividi questo sito sui social