Effettua una ricerca
Giovanni Mancarella
Ruolo
Professore Ordinario
Organizzazione
Università del Salento
Dipartimento
Dipartimento di Matematica e Fisica "Ennio De Giorgi"
Area Scientifica
Area 02 - Scienze fisiche
Settore Scientifico Disciplinare
FIS/01 - Fisica Sperimentale
Settore ERC 1° livello
PE - Physical sciences and engineering
Settore ERC 2° livello
PE9 Universe Sciences: Astro-physics/chemistry/biology; solar system; stellar, galactic and extragalactic astronomy, planetary systems, cosmology, space science, instrumentation
Settore ERC 3° livello
PE9_10 High energy and particles astronomy – Xrays, cosmic rays, gamma rays, neutrinos
We report on the extensive multi-wavelength observations of the blazar Markarian 421 (Mrk 421) covering radio to gamma-rays, during the 4.5 year period of ARGO-YBJ and Fermi common operation time, from 2008 August to 2013 February. These long-term observations, extending over an energy range of 18 orders of magnitude, provide a unique chance to study the variable emission of Mrk 421. In particular, due to the ARGO-YBJ and Fermi data, the entire. energy range from 100 MeV to 10 TeV is covered without any gap. In the observation period, Mrk 421 showed both low-and high-activity states at all wavebands. The correlations among flux variations in different wavebands were analyzed. The X-ray flux is clearly correlated with the TeV gamma-ray flux, while the GeV gamma-rays only show a partial correlation with the TeV gamma-rays. Radio and UV fluxes seem to be weakly or not correlated with the X-ray and gamma-ray fluxes. Seven large flares, including five X-ray flares and two GeV gamma-ray flares with variable durations (3-58 days), and one X-ray outburst phase were identified and used to investigate the variation of the spectral energy distribution with respect to a relative quiescent phase. During the outburst phase and the seven flaring episodes, the peak energy in X-rays is observed to increase from sub-keV to a few keV. The TeV gamma-ray flux increases up to 0.9-7.2 times the flux of the Crab Nebula. The behavior of GeV gamma-rays is found to vary depending on the flare, a feature that leads us to classify flares into three groups according to the GeV flux variation. Finally, the one-zone synchrotron self-Compton model was adopted to describe the emission spectra. Two out of three groups can be satisfactorily described using injected electrons with a power-law spectral index around 2.2, as expected from relativistic diffuse shock acceleration, whereas the remaining group requires a harder injected spectrum. The underlying physical mechanisms responsible for different groups may be related to the acceleration process or to the environment properties.
In 2011 ARGO-YBJ experiment has reported a work to study the absolute rigidity scale of the primary cosmic ray particles based on the Moon's shadow observation. Given the progress in high energy hadronic interaction models with LHC data, in cosmic ray chemical composition measurement and in experimental data accumulation, more updates can be researched. This paper aims to further disentangle the composition dependence in absolute-energy-scale calibration by using specific moon-shadow data which mainly is comprised of light component cosmic rays. Results show that, 17% energy scale error is estimated from 3 TeV to 50 TeV. To validate the performance of this technique, the light component cosmic ray spectrum in the same energy region is shown. (C) 2017 Elsevier B.V. All rights reserved.
This paper reports on the measurement of the large-scale anisotropy in the distribution of cosmic-ray arrival directions using the data collected by the air shower detector ARGO-YBJ from 2008 January to 2009 December, during the minimum of solar activity between cycles 23 and 24. In this period, more than 2 × 1011 showers were recorded with energies between ∼1 and 30 TeV. The observed two-dimensional distribution of cosmic rays is characterized by two wide regions of excess and deficit, respectively, both of relative intensity ∼10−3 with respect to a uniform flux, superimposed on smaller size structures. The harmonic analysis shows that the large-scale cosmic-ray relative intensity as a function of R.A. can be described by the first and second terms of a Fouries series. The high event statistics allow the study of the energy dependence of the anistropy, showing that the amplitude increases with energy, with a maximum intensity at ∼10 TeV, and then decreases while the phase slowly shifts toward lower values of R.A. with increasing energy. The ARGO-YBJ data provide accurate observations over more than a decade of energy around this feature of the anisotropy spectrum.
The geomagnetic field causes not only the East-West effect on the primary cosmic rays but also affects the trajectories of the secondary charged particles in the shower, causing their lateral distribution to be stretched along certain directions. Thus both the density of the secondaries near the shower axis and the trigger efficiency of a detector array decrease. The effect depends on the age and on the direction of the showers, thus involving the measured azimuthal distribution. Here the non-uniformity of the azimuthal distribution of the reconstructed events in the ARGO-YBJ experiment is deeply investigated for different zenith angles on the light of this effect. The influence of the geomagnetic field as well as geometric effects are studied by means of a Monte Carlo simulation.
ARGO-YBJ is an extensive air shower detector located at the Yangbajing Cosmic Ray Laboratory (4300 m a.s.l., 606 g cm−2 atmospheric depth, Tibet, China). It is made by a single layer of Resistive Plate Chambers (RPCs, total surface 6700 m2) grouped into 153 units called “clusters”. The low energy threshold of the experiment is obtained using the ”scaler operation mode”, counting all the particles hitting the detector without reconstruction of the shower size and arrival direction. For each cluster the signals generated by these particles are put in coincidence in a narrow time window (150 ns) and read by four independent scaler channels, giving the counting rates of channel 1, 2, 3 and 4 hits. The study of these counting rates pointed out a different behavior of channel 1 respect to the higher multiplicity channels: while the MC simulations can account fairly well for the coincident counting rates, the expectation for channel 1 is sensibly less than the measured value. Moreover, the regression coefficient with the atmospheric pressure for channel 1 is also about half of the value measured for the coincident counting rates: seemingly half of these counts did not cross the atmosphere. Measurements of the natural radioactivity background in the air of the detector hall and a MC simulation to estimate its contribution on our counting rates are presented and discussed.
The charge readout of Resistive Plate Chambers (RPCs) is implemented in the ARGO-YBJ experiment to measure the charged particle density of the shower front up to 10^4 / m^2, enabling the study of the primary cosmic rays with energies in the ‘‘knee’’ region. As the first time for RPCs being used this way, a telescope with RPCs and scintillation detectors is setup to calibrate the number of charged particles hitting a RPC versus its charge readout. Air shower particles are taken as the calibration beam. The telescope was tested at sea level and then moved to the ARGO-YBJ site for coincident operation with the ARGO-YBJ experiment. The charge readout shows good linearity with the particle density in the dynamic range (up to 200/m^2).
The ARGO-YBJ experiment is a full coverage array of Resistive Plate Chambers (RPCs) with an active area of 5800 m2. In order to eliminate the response difference of the charge readout from the RPCs, a calibration procedure is carried out with the iso-gradient method. This method also allows the extension of the absolute calibration with the muon telescope including scintillation detectors to all the RPCs in the array. The overall systematic uncertainty in measurements of the number of particles by the RPCs is 10.7%. In general, the method gives results consistent with those from a totally different approach also used in the experiment.
The main scientific goals of the ARGO-YBJ experiment are ray astronomy with a few hundreds GeV energy threshold and cosmic ray physics below and around the knee of the primary energy spectrum (10**12−10**16 eV), where the transition from direct to indirect measurement techniques takes place. The ARGO-YBJ experiment, located at the Cosmic Ray Observatory of Yangbajing (Tibet, P.R. of China, 4 300 m a.s.l.), is an unconventional Extensive Air Shower array of about 6,700 m2 of active area, the only one exploiting the full-coverage technique at very high altitude currently in operation. The detector space-time granularity, performance and location offer a unique chance to make a detailed study of the structure of cosmic ray showers, in particular of the hadronic component. In this work we will focus on the main experimental results concerning cosmic ray and hadronic interaction physics: primary cosmic ray energy spectrum, antiproton over proton ratio, anisotropy in the cosmic ray flux and proton-air cross-section. Moreover, the possible data analysis improvements based on the use of all detailed information on the shower front (curvature, time width, rise time and so on), as well as the extension of the investigable energy range, allowed by the analog RPC readout, will be pointed out.
The ARGO–YBJ experiment is a full-coverage air shower detector located at the Yangbajing Cosmic Ray Observatory (Tibet, People’s Republic of China, 4300 m a.s.l.). The high altitude, combined with the full-coverage technique, allows the detection of extensive air showers in a wide energy range and offer the possibility of measuring the cosmic ray proton plus helium spectrum down to the TeV region, where direct balloon/space-borne measurements are available. The detector has been in stable data taking in its full configuration from November 2007 to February 2013. In this paper the measurement of the cosmic ray proton plus helium energy spectrum is presented in the region 3–300 TeV by analyzing the full collected data sample. The resulting spectral index is γ = −2.64 pm 0.01, the error is dominated by systematic uncertainties. The accurate measurement of the spectrum of light elements with a ground based air shower detector demonstrates the possibility of extending these measurements at larger energies, where galactic cosmic ray sources should run out of power in accelerating light elements.
The ARGO-YBJ air shower detector monitored the Crab Nebula gamma-ray emission from 2007 November to 2013 February. The integrated signal, consisting of ∼3.3×10^5 events, reached the statistical significance of 21.1 standard deviations. The obtained energy spectrum in the energy range 0.3–20 TeV can be described by a power law function dN/dE = I_0 (E / 2TeV)^{−α}, with a flux normalization I_0 = (5.2±0.2)×10−12 photons cm−2 s−1 TeV−1 and α=2.63±0.05, corresponding to an integrated flux above 1 TeV of 1.97×10−11 photons cm−2 s−1. The systematic error is estimated to be less than 30% for the flux normalization and 0.06 for the spectral index. Assuming a power law spectrum with an exponential cutoff dN/dE=I_0 (E/2TeV)^{−α} exp (−E/E_cut), the lower limit of the cutoff energy E_cut is 12 TeV, at 90% confidence level. Our extended data set allows the study of the TeV emission over long timescales. Over five years, the light curve of the Crab Nebula in 200-day bins is compatible with a steady emission with a probability of 7.3×10−2. A correlated analysis with Fermi-LAT data over ∼4.5 yr using the light curves of the two experiments gives a Pearson correlation coefficient r=0.56±0.22. Concerning flux variations on timescales of days, a “blind” search for flares with a duration of 1–15 days gives no excess with a significance higher than four standard deviations. The average rate measured by ARGO-YBJ during the three most powerful flares detected by Fermi-LAT is 205±91 photons day−1, consistent with the average value of 137±10 day−1.
We report on a measurement of thermal neutrons, generated by the hadronic component of extensive air showers (EAS), by means of a small array of EN-detectors developed for the PRISMA project (PRImary Spectrum Measurement Array), novel devices based on a compound alloy of ZnS(Ag) and (LiF)-Li-6. This array has been operated within the ARGO-YBJ experiment at the high altitude Cosmic Ray Observatory in Yangbajing (Tibet, 4300 m a.s.l.). Due to the tight correlation, between the air shower hadrons and thermal neutrons, this technique can be envisaged as a simple way to estimate the number of high energy hadrons in EAS. Coincident events generated by primary cosmic rays of energies greater than 100 TeV have been selected and analyzed. The EN-detectors have been used to record simultaneously thermal neutrons and the air shower electromagnetic component. The density distributions of both components and the total number of thermal neutrons have been measured. The correlation of these data with the measurements carried out by ARGO-YBJ confirms the excellent performance of the EN-detector. (C) 2016 Elsevier B.V. All rights reserved.
Detecting and monitoring emissions from flaring gamma-ray sources in the very-high-energy (VHE, > 100 GeV) band is a very important topic in gamma-ray astronomy. The ARGO-YBJ detector is characterized by a high duty cycle and a wide field of view. Therefore, it is particularly capable of detecting flares from extragalactic objects. Based on fast reconstruction and analysis, real-time monitoring of 33 selected VHE extragalactic sources is implemented. Flares exceeding a specific threshold are reported timely, hence enabling the follow-up observation of these objects using more sensitive detectors, such as Cherenkov telescopes.
The energy spectrum of cosmic Hydrogen and Helium nuclei has been measured below the so-called knee by using a hybrid experiment with a wide field-of-view Cherenkov telescope and the Resistive Plate Chamber (RPC) array of the ARGO-YBJ experiment at 4300 m above sea level. The Hydrogen and Helium nuclei have been well separated from other cosmic ray components by using a multi-parameter technique. A highly uniform energy resolution of about 25% is achieved throughout the whole energy range (100-700 TeV). The observed energy spectrum is compatible with a single power law with index gamma = -2.63 +- 0.06.
The geomagnetic field causes not only the east-west effect on primary cosmic rays but also affects the trajectories of the secondary charged particles in the shower, causing their lateral distribution to be stretched. Thus, both the density of the secondaries near the shower axis and the trigger efficiency of detector arrays decrease. The effect depends on the direction of the showers, thus, introducing a modulation in the measured azimuthal distribution. The azimuthal distribution of the events collected by the ARGO-YBJ detector is deeply investigated for different zenith angles in light of this effect.
We report on the search for Gamma Ray Bursts (GRBs) in the energy range 1−100 GeV in coincidence with the prompt emission detected by satellites, using the Astrophysical Radiation Ground-based Observatory at YangBa-Jing ARGO-YBJ). With its big active surface (6700 m 2) and large field of view (2 sr) the ARGO-YBJ air shower detector is particularly suitable to detect unpredictable and short duration events such as GRBs. The search has been performed using the single particle technique in time coincidence with satellite detections both for single events and for the piling up of all the GRBs in time and in phase. Between November 2004 and June 2010 115 GRBs, detected by different satellites (mainly Swift and Fermi), occurred within the field of view of ARGO-YBJ. For 94 of these we searched for a counterpart in the ARGO-YBJ data finding no statistically significant emission. Search methods and results are discussed.
In 2008 the blazar Markarian 421 entered a very active phase and was one of the brightest sources in the sky at TeV energies, showing frequent flaring episodes. Using the data of ARGO-YBJ, a full coverage air shower detector located at Yangbajing (4300 m a.s.l., Tibet, China), we monitored the source at gamma ray energies E > 0.3 TeV during the whole year. The observed flux was variable, with the strongest flares in March and June, in correlation with X-ray enhanced activity. While during specific episodes the TeV flux could be several times larger than the Crab Nebula one, the average emission from day 41 to 180 was almost twice the Crab level, with an integral flux of (3.6±0.6) × 10-11 photons cm-2 s-1 for energies E > 1 TeV, and decreased afterwards. This paper concentrates on the flares occurred in the first half of June. This period has been deeply studied from optical to 100 MeV gamma rays, and partially up to TeV energies, since the moonlight hampered the Cherenkov telescope observations during the most intense part of the emission. Our data complete these observations, with the detection of a signal with a statistical significance of 3.8 standard deviations on June 11-13, corresponding to a gamma ray flux about 6 times larger than the Crab one above 1 TeV. The reconstructed differential spectrum, corrected for the intergalactic absorption, can be represented by a power law with an index = -2.1+0.7-0.5 extending up to several TeV. The spectrum slope is fully consistent with previous observations reporting a correlation between the flux and the spectral index, suggesting that this property is maintained in different epochs and characterizes the source emission processes.
The ARGO-YBJ experiment is an Extensive Air Shower detector which combines high altitude location (Tibet, P.R. China, 4300 m a.s.l.) and full coverage with Resistive Plate Counters, resulting in an energy threshold of a few hundred GeV. The large eld of view (2 sr) and high duty cycle allow the continuous monitoring of the Northern sky, searching for unknown sources and unpredictable events, such as ares in blazar emissions or high energy Gamma Ray Bursts. In this paper we will present some results obtained in gamma-ray astronomy with the ARGO-YBJ experiment.
ARGO-YBJ is a full coverage air shower array located at the YangBaJing Cosmic Ray Laboratory (Tibet, P.R. China, 4300 m a.s.l., 606 g/cm2) recording data with a duty cycle 85% and an energy threshold of a few hundred GeV. In this paper the latest results in Gamma-Ray Astronomy are summarized.
In this paper we report on the observations of TeV gamma ray sources performed by the air shower detector ARGO-YBJ. The objects studied in this work are the blazar Markarian 421 and the extended galactic source MGROJ1908+06, monitored during 2 years of operation. Mrk421 has been detected by ARGO-YBJ with a statistical significance of 11 standard deviations. The observed TeV emission was highly variable, showing large enhancements of the flux during active periods. The study of the spectral behaviour during flares revealed a positive correlation of the hardness with the flux, as already reported in the past by the Whipple telescope, suggesting that this is a long term property of the source. ARGO-YBJ observed a strong correlation between TeV gamma rays and the X-ray flux measured by RXTM/ASM and SWIFT/BAT during the whole period, with a time lag compatible with zero, supporting the one-zone SSC model to describe the emission mechanism. MGROJ1908+06 has been detected by ARGO-YBJ with 5 standard deviation of significance. From our data the source appears extended and the measured extension is ext=0.48+0.26−0.28, in agreement with a previous HESS observation. The average flux is in marginal agreement with that reported by MILAGRO, but significantly higher than that obtained by HESS, suggesting a possible flux variability.
In 2008, the blazar Mrk421 entered in a very active phase and was one of the brightest sources in the sky at TeV energies, showing strong and frequent flaring. We searched for gamma-ray emission at energies E>0.8 TeV during the whole 2008 with the ARGO-YBJ experiment, a full coverage air shower detector located at Yangbajing (4300 m a.s.l., Tibet, P.R. China). The observed signal is not constant and in correlation with X-ray measurements. The average emission, during the active period of the source, was about twice the Crab Nebula level. This paper concentrates on 2008 June when the Mrk421 flaring activity has been studied from optical to 100 MeV gamma rays, and only partially up to TeV energies, since the moonlight hampered the Cherenkov telescope observations after 8 June. Our data complete these observations, with the detection of a second flare of intensity of about 7 Crab units on June 11-13, with a statistical significance of 4.2 standard deviations. The observed flux is consistent with a prediction made in the framework of the Synchrotron Self-Compton model, in which the flare is caused by a rapid acceleration of leptons in the jet.
The ARGO-YBJ experiment is a multipurpose detector exploiting the full coverage approach at very high altitude. The apparatus, in stable data taking since November 2007 with an energy threshold of a few hundreds of GeV and a duty-cycle > 85%, is located at the YangBaJing Cosmic Ray Laboratory (Tibet, P.R. China, 4300 m a.s.l., 606 g/cm2). A number of interesting results are available in cosmic ray physics and in gamma-ray astronomy after the first 3 years of stable data taking. In this paper gamma-ray astronomy results are summarized.
The extended TeV gamma-ray source ARGO J2031+4157 (or MGRO J2031+41) is positionally consistent with the Cygnus Cocoon discovered by Fermi-LAT at GeV energies in the Cygnus superbubble. Reanalyzing the ARGO-YBJ data collected from 2007 November to 2013 January, the angular extension and energy spectrum of ARGO J2031+4157 are evaluated. After subtracting the contribution of the overlapping TeV sources, the ARGO-YBJ excess map is fitted with a two-dimensional Gaussian function in a square region of 10° × 10°, finding a source extension σ_ext = 1.8 ± 0.5 defrees. The observed differential energy spectrum is dN/dE = (2.5 ± 0.4) × 10^{–11} (E/1 TeV)^{–2.6 ± 0.3} photons cm–2 s–1 TeV–1, in the energy range 0.2-10 TeV. The angular extension is consistent with that of the Cygnus Cocoon as measured by Fermi-LAT and the spectrum also shows a good connection with the one measured in the 1-100 GeV energy range. These features suggest to identify ARGO J2031+4157 as the counterpart of the Cygnus Cocoon at TeV energies. The Cygnus Cocoon, located in the star-forming region of Cygnus X, is interpreted as a cocoon of freshly accelerated cosmic rays related to the Cygnus superbubble. The spectral similarity with supernova remnants (SNRs) indicates that the particle acceleration inside a superbubble is similar to that in an SNR. The spectral measurements from 1 GeV to 10 TeV allows for the first time to determine the possible spectrum slope of the underlying particle distribution. A hadronic model is adopted to explain the spectral energy distribution.
The measurement of the cosmic ray energy spectrum, in particular for individual species of nuclei, is an important tool to investigate cosmic ray production and propagation mechanisms. The determination of the “knees” in the spectra of different species remains one of the main challenges in cosmic ray physics. In fact, experimental results are still conflicting. In this paper we report a measurement of the mixed proton and helium energy spectrum, obtained with the combined data of the ARGO-YBJ experiment and a wide field of view Cherenkov telescope, a prototype of the future LHAASO experiment.
The ARGO-YBJ experiment detects extensive air showers in a wide energy range by means of a full-coverage detector which is in stable data taking in its full configuration since November 2007 at the YBJ International Cosmic Ray Observatory (4300 m a.s.l., Tibet, People’s Republic of China). In this paper the measurement of the light-component spectrum of primary cosmic rays in the energy region 5-200 TeV is reported. The method exploited to analyze the experimental data is based on a Bayesian procedure. The measured intensities of the light component are consistent with the recent CREAM results and higher than that obtained adding the proton and helium spectra reported by the RUNJOB experiment.
ARGO-YBJ is an air shower detector array with a fully covered layer of Resistive Plate Chambers. It is operated with a high duty cycle and a large field of view. It monitors continuously the northern sky at energies above 0.3 TeV. In this paper, we report a long-term monitoring of Mrk 421 over the period from November 2007 to February 2010. Meanwhile, this source was observed by the satellite-borne experiments RXTE and Swift in the X-ray band. Mrk 421 was very active especially in the first half of 2008. Many flares are observed in both X-ray and gamma-ray bands simultaneously. The gamma-ray flux observed by ARGO-YBJ has a clear correlation with the X-ray flux. No lag longer than 1 day between the X-ray and gamma-ray photons is found. The evolution of the spectral energy distribution is investigated by measuring indices at four different flux levels. Hardening of the spectra is observed in both X-ray and gamma-ray bands. The gamma-ray flux increases quadratically with the simultaneously measured X-ray flux. All these observational results strongly favor the synchrotron self-Compton process as the underlying radiative mechanism.
As one of the brightest active blazars in both X-ray and very high energy γ-ray bands, Mrk 501, is very useful for physics associated with jets from active galactic nuclei. The ARGO-YBJ experiment has monitoredMrk 501 for γ-rays above 0.3 TeV since 2007 November. The largest flare since 2005 was observed from 2011 October and lasted until about 2012 April. In this paper, a detailed analysis of this event is reported. During the brightest γ-ray flaring episodes from 2011 October 17 to November 22, an excess of the event rate over 6σ is detected by ARGO-YBJ in the direction of Mrk 501, corresponding to an increase of the γ -ray flux above 1 TeV by a factor of 6.6 ± 2.2 from its steady emission. In particular, the γ -ray flux above 8 TeV is detected with a significance better than 4σ. Based on time-dependent synchrotron self-Compton (SSC) processes, the broadband energy spectrum is interpreted as the emission from an electron energy distribution parameterized with a single power-law function with an exponential cutoff at its high-energy end. The average spectral energy distribution for the steady emission is well described by this simple one-zone SSC model. However, the detection of γ -rays above 8 TeV during the flare challenges this model due to the hardness of the spectra. Correlations between X-rays and γ -rays are also investigated.
The ARGO-YBJ detector layout (a full coverage Resistive Plate Chamber, RPC, carpet), features (high resolution space-time pixels) and location (about 600g/cm2 of atmospheric depth) offer a unique opportunity for a detailed study of several characteristics of the hadronic component of the cosmic ray flux in the 1012-1015 eV energy range. The analog readout of the RPC signals indeed provides a powerful tool to study, with unprecedented resolution and without saturation, the extensive air shower space-time structure very close to its axis. The distribution of charged particles at ground and the time structure of the shower front allow estimating the shower age at the detection level independently from the primary mass. Furthermore the truncated size, measured within few meters from the core, gives a reliable energy measurement without biases introduced by finite detector effects. Fluctuations are also reduced thanks to the proximity of the shower maximum to the high altitude detection level. These features allows mass composition studies with an EAS detector in an energy region where a comparison with space or balloon born experiments are now possible for the first time, thus giving a further cross checks on the systematics of the adopted analysis procedures. Moreover, measurements of the proton-air cross section, of the particle distribution close to the shower axis, etc., give new inputs, in the very forward region, to the hadronic interaction models currently used for the study of the cosmic ray flux and its origin up to the highest energies.
The Sun blocks cosmic-ray particles from outside the solar system, forming a detectable shadow in the sky map of cosmic rays detected by the ARGO-YBJ experiment in Tibet. Because the cosmic-ray particles are positively charged, the magnetic field between the Sun and the Earth deflects them from straight trajectories and results in a shift of the shadow from the true location of the Sun. Here, we show that the shift measures the intensity of the field that is transported by the solar wind from the Sun to the Earth.
Cosmic ray antiprotons provide an important probe for the study of cosmic ray propagation in the interstellar space and to investigate the existence of Galactic dark matter. The ARGO-YBJ experiment is observing the Moon shadow with high statistical significance at an energy threshold of a few hundred GeV. Using all the data collected until November 2009, we set two upper limits on the ¯p/p flux ratio: 5% at an energy of 1.4 TeV and 6% at 5 TeV with a confidence level of 90%. In the few-TeV range the ARGO-YBJ results are the lowest available, useful to constrain models for antiproton production in antimatter domains.
Cosmic ray antiprotons provide an important probe for the study of cosmic-ray propagation in the interstellar space and to investigate the existence of Galactic dark matter. Cosmic rays are hampered by the Moon, therefore a deficit of cosmic rays in its direction is expected (the so-called Moon shadow). The Earth–Moon system acts as a magnetic spectrometer. Infact, due to the geomagnetic field the center of the Moon shifts westward by an amount depending on the primary cosmic ray energy. Paths of primary antiprotons are therefore deflected in an opposite sense in their way to the Earth. This effect allows, in principle, the search of antiparticles in the opposite direction of the observed Moon shadow. The ARGO-YBJ experiment, in stable data taking since November 2007 with an energy threshold of a few 100s of GeV, is observing the Moon shadow with high statistical significance. Using about 1 year data, an upper limit of the proton/antiproton flux ratio in the few-TeV energy region is set to a few percent with a confidence level of 90%.
Cosmic ray antiprotons provide an important probe to study the cosmic ray propagation in the interstellar space and to investigate the existence of dark matter. Acting the Earth-Moon system as a magnetic spectrometer, paths of primary antiprotons are deflected in the opposite sense with respect to those of the protons in their way to the Earth. This effect allows, in principle, the search for antiparticles in the direction opposite to the observed deficit of cosmic rays due to the Moon (the so-called `Moon shadow'). The ARGO-YBJ experiment, located at the Yangbajing Cosmic Ray Laboratory (Tibet, P.R. China, 4300 m a.s.l., 606 g/cm2), is particularly effective in measuring the cosmic ray antimatter content via the observation of the cosmic rays shadowing effect due to: (1) good angular resolution, pointing accuracy and long-term stability; (2) low energy threshold; (3) real sensitivity to the geomagnetic field. Based on all the data recorded during the period from July 2006 through November 2009 and on a full Monte Carlo simulation, we searched for the existence of the shadow cast by antiprotons in the TeV energy region. No evidence of the existence of antiprotons is found in this energy region. Upper limits to the [`p]/p flux ratio are set to 5% at a median energy of 1.4 TeV and 6% at 5 TeV with a confidence level of 90%. In the TeV energy range these limits are the lowest available.
Measuring the anisotropy of the arrival direction distribution of cosmic rays provides important information on the propagation mechanisms and the identification of their sources. In fact, the flux of cosmic rays is thought to be dependent on the arrival direction only due to the presence of nearby cosmic ray sources or particular magnetic-field structures. Recently, the observation of unexpected excesses at TeV energy down to an angular scale as narrow as 10° raised the possibility that the problem of the origin of Galactic cosmic rays may be addressed by studying the anisotropy. The ARGO-YBJ experiment is a full-coverage extensive air showers array, sensitive to cosmic rays with the energy threshold of a few hundred GeV. Searching for small-size deviations from the isotropy, the ARGO-YBJ Collaboration explored the declination region 20°–80°, making use of about 3.7x10**11 events collected from November 2007 to May 2012. In this paper, the detection of different significant (up to 13 standard deviations) medium-scale anisotropy regions in the arrival directions of cosmic rays is reported. The observation was performed with unprecedented detail. The relative excess intensity with respect to the isotropic flux extends up to 10**-3. The maximum excess occurs for proton energies of 10–20 TeV, suggesting the presence of unknown features of the magnetic fields the charged cosmic rays propagate through, or some contribution of nearby sources never considered so far. The observation of new weaker few-degree excesses throughout the sky region 195° < R.A. < 290° is reported for the first time.
We report the observation of TeV γ-rays from the Cygnus region using the ARGO-YBJ data collected from 2007 November to 2011 August. Several TeV sources are located in this region including the two bright extended MGRO J2019+37 and MGRO J2031+41. According to the Milagro data set, at 20 TeV MGRO J2019+37 is the most significant source apart from the Crab Nebula. No signal from MGRO J2019+37 is detected by the ARGO-YBJ experiment, and the derived flux upper limits at the 90% confidence level for all the events above 600 GeV with medium energy of 3 TeV are lower than the Milagro flux, implying that the source might be variable and hard to be identified as a pulsar wind nebula. The only statistically significant (6.4 standard deviations) γ-ray signal is found from MGRO J2031+41, with a flux consistent with the measurement by Milagro.
The extended gamma-ray source MGRO J1908+06, discovered by the Milagro air shower detector in 2007, has been observed for ∼4 years by the ARGO-YBJ experiment at TeV energies, with a statistical significance of 6.2 standard deviations. The peak of the signal is found at a position consistent with the pulsar PSR J1907+0602. Parameterizing the source shape with a two-dimensional Gauss function, we estimate an extension of σext = 0.49° ± 0.22°, which is consistent with a previous measurement by the Cherenkov Array H.E.S.S. The observed energy spectrum is dN/dE = (6.1 ± 1.4) × 10−13 (E/4 TeV)**(−2.54±0.36) photons cm−2 s−1 TeV−1, in the energy range of ∼1–20 TeV. The measured gamma-ray flux is consistent with the results of the Milagro detector, but is ∼2–3 times larger than the flux previously derived by H.E.S.S. at energies of a few TeV. The continuity of the Milagro and ARGO-YBJ observations and the stable excess rate observed by ARGO-YBJ and recorded in four years of data support the identification of MGRO J1908+06 as the steady powerful TeV pulsar wind nebula of PSR J1907+0602, with an integrated luminosity over 1 TeV ∼ 1.8 times the luminosity of the Crab Nebula.
We report the observation of a very high energy gamma-ray source whose position is coincident with HESS J1841−055. This source has been observed for 4.5 years by the ARGO-YBJ experiment from 2007 November to 2012 July. Its emission is detected with a statistical significance of 5.3 standard deviations. Parameterizing the source shape with a two-dimensional Gaussian function, we estimate an extension σ = (0.40+0.32−0.22)°, which is consistent with the HESS measurement. The observed energy spectrum is dN/dE=(9.0±1.6)×10**(−13) (E/5 TeV)**(− 2.32±0.23) photons cm−2 s−1 TeV−1, in the energy range 0.9–50 TeV. The integral gamma-ray flux above 1 TeV is 1.3±0.4 Crab, which is 3.2±1.0 times the flux derived by HESS. The differences in the flux determination between HESS and ARGO-YBJ and possible counterparts at other wavelengths are discussed.
Cosmic rays are hampered by the Moon and a deficit in its direction is expected (the so-called Moon shadow). The Moon shadow is an important tool to determine the performance of an air shower array. Indeed, the westward displacement of the shadow center, due to the bending effect of the geomagnetic field on the propagation of cosmic rays, allows the setting of the absolute rigidity scale of the primary particles inducing the showers recorded by the detector. In addition, the shape of the shadow permits to determine the detector point spread function, while the position of the deficit at high energies allows the evaluation of its absolute pointing accuracy. In this paper we present the observation of the cosmic ray Moon shadowing effect carried out by the ARGO-YBJ experiment in the multi-TeV energy region with high statistical significance (55 standard deviations). By means of an accurate Monte Carlo simulation of the cosmic rays propagation in the Earth-Moon system, we have studied separately the effect of the geomagnetic field and of the detector point spread function on the observed shadow. The angular resolution as a function of the particle multiplicity and the pointing accuracy have been obtained. The primary energy of detected showers has been estimated by measuring the westward displacement as a function of the particle multiplicity, thus calibrating the relation between shower size and cosmic ray energy. The stability of the detector on a monthly basis has been checked by monitoring the position and the deficit of the Moon shadow. Finally, we have studied with high statistical accuracy the shadowing effect in the day/’’night’’ time looking for possible effect induced by the solar wind.
The ARGO-YBJ experiment is an air shower detector for gamma ray astronomy and cosmic ray studies with an energy threshold of ∼500 GeV. Working in "single particle mode", i.e. counting the single particles hitting the detector at fixed time intervals, ARGO-YBJ can monitor cosmic ray and gamma ray transients at energies of a few GeV. The single particle counting rate is modulated by the atmospheric pressure and temperature, and is affected by the local radioactivity from soil and air. Among the radioactive elements, radon gas is of particular importance since its concentration in air can vary significantly, according to environmental conditions. In this paper we evaluate the contribution of the radon daughter gamma ray emitters to the single particle counting rate measured by ARGO-YBJ. According to our analysis, the radon gas contribution is roughly 1-2%, producing a counting rate modulation of the same order of magnitude of the atmospheric effects.
The full coverage extensive airshower detector ARGO-YBJ, located in Tibet at 4300 m of altitude, has monitored the sky at gamma ray energy E > 0.6 TeV in the declination band from -10° to +70°. In 424 days the Crab Nebula and Mrk421 have been detected with a significance, respectively, of 7.0 and 8.0 standard deviations. The analysis of the cosmic ray background in the same sky band, has revealed the existence of a significant excess of the cosmic ray flux in two localized regions of angular size 10°–30°, confirming previous indications. The origin of such excesses is still unexplained. During 2008 the observed Mrk421 flux was highly variable, with the strongest flares in March–June, in good correlation with X-ray data. One of the most intense flares occurred in the first half of June and has been deeply studied by different detectors in the energy range from optical to 100MeV gamma rays, but only partially up to TeV energies, since the moon lighth ampered the Cherenkov telescope measurements during the second and most intense part of the emission. Our data complete these observations, with the detection of a signal of intensity of about 7 Crab units on June 11–13, with a statistical significance of 4.2 standard deviations. The observed flux is consistent with a prediction made in the frame work of the Synchrotron Self-Compton model, in which the flare is caused by a rapid acceleration of leptons in the jet.
The search for gamma-ray burst (GRB) emission in the energy range of 1-100 GeV in coincidence with the satellite detection has been carried out using the Astrophysical Radiation with Ground-based Observatory at YangBaJing (ARGO-YBJ) experiment. The high-altitude location (4300 m a.s.l.), the large active surface (~6700 m2 of Resistive Plate Chambers), the wide field of view (~2 sr, limited only by the atmospheric absorption), and the high duty cycle (>86%) make the ARGO-YBJ experiment particularly suitable to detect short and unexpected events like GRBs. With the scaler mode technique, i.e., counting all the particles hitting the detector with no measurement of the primary energy and arrival direction, the minimum threshold of ~1 GeV can be reached, overlapping the direct measurements carried out by satellites. During the experiment lifetime from 2004 December 17 to 2013 February 7, a total of 206 GRBs occurring within the ARGO-YBJ field of view (zenith angle θ ≤ 45°) have been analyzed. This is the largest sample of GRBs investigated with a ground-based detector. Two light curve models have been assumed and since in both cases no significant excess has been found, the corresponding fluence upper limits in the 1-100 GeV energy region have been derived, with values as low as 10–5 erg cm–2. The analysis of a subset of 24 GRBs with known redshift has been used to constrain the fluence extrapolation to the GeV region together with possible cutoffs under different assumptions on the spectrum.
The NESSiE Collaboration has been setup to undertake a conclusive experiment to clarify the muon- neutrino disappearance measurements at short baselines in order to put severe constraints to models with more than the three-standard neutrinos. To this aim the current FNAL-Booster neutrino beam for a Short-Baseline exper- iment was carefully evaluated by considering the use of magnetic spectrometers at two sites, near and far ones.
The events recorded by ARGO-YBJ in more than five years of data collection have been analyzed to determine the diffuse gamma-ray emission in the Galactic plane at Galactic longitudes 25° < l < 100° and Galactic latitudes ∣ b | < 5°. The energy range covered by this analysis, from ∼350 GeV to ∼2 TeV, allows the connection of the region explored by Fermi with the multi-TeV measurements carried out by Milagro. Our analysis has been focused on two selected regions of the Galactic plane, i.e., 40° < l < 100° and 65° < l < 85° (the Cygnus region), where Milagro observed an excess with respect to the predictions of current models. Great care has been taken in order to mask the most intense gamma-ray sources, including the TeV counterpart of the Cygnus cocoon recently identified by ARGO-YBJ, and to remove residual contributions. The ARGO-YBJ results do not show any excess at sub-TeV energies corresponding to the excess found by Milagro, and are consistent with the predictions of the Fermi model for the diffuse Galactic emission. From the measured energy distribution we derive spectral indices and the differential flux at 1 TeV of the diffuse gamma-ray emission in the sky regions investigated.
The Astrophysical Radiation with Ground-based Observatory at Yang Ba Jing (ARGO-YBJ) detector is an extensive air shower array that has been used to monitor the northern γ-ray sky at energies above 0.3 TeV from 2007 November to 2013 January. In this paper, we present the results of a sky survey in the declination band from −10◦ to 70◦, using data recorded over the past five years. With an integrated sensitivity ranging from 0.24 to ∼1 Crab units depending on the declination, six sources have been detected with a statistical significance greater than five standard deviations. Several excesses are also reported as potential γ-ray emitters. The features of each source are presented and discussed. Additionally, 95% confidence level upper limits of the flux from the investigated sky region are shown. Specific upper limits for 663 GeV γ-ray active galactic nuclei inside the ARGO-YBJ field of view are reported. The effect of the absorption of γ-rays due to the interaction with extragalactic background light is estimated.
The ARGO-YBJ experiment has been in stable data taking from November 2007 till February 2013 at the YangBaJing Cosmic Ray Observatory (4300 m a.s.l.). The detector consists of a single layer of Resistive Plate Chambers (RPCs) (6700 m2) operated in streamer mode. The signal pick-up is obtained by means of strips facing one side of the gas volume. The digital readout of the signals, while allows a high space–time resolution in the shower front reconstruction, limits the measurable energy to a few hundred TeV. In order to fully investigate the 1–10 PeV region, an analog readout has been implemented by instrumenting each RPC with two large size electrodes facing the other side of the gas volume. Since December 2009 the RPC charge readout has been in operation on the entire central carpet (5800 m2). In this configuration the detector is able to measure the particle density at the core position where it ranges from tens to many thousands of particles per m2. Thus ARGO-YBJ provides a highly detailed image of the charge component at the core of air showers. In this paper we describe the analog readout of RPCs in ARGO-YBJ and discuss both the performance of the system and the physical impact on the EAS measurements.
Gamma ray source detection above 30TeV is an encouraging approach for finding galactic cosmic ray origins. All sky survey for gamma ray sources using wide field of view detector is essential for population accumulation for various types of sources above 100 GeV. To target the goals, the ARGO-YBJ experiment has been established. Significant progresses have been made in the experiment. A large air shower detector array in an area of 1 km2 is proposed to boost the sensitivity. Hybrid detections with multitechniques will allow a good discrimination between different types of primary particles, including photons and protons, thus enable an energy spectrum measurement for individual species. Fluorescence light detector array will extend the spectrum measurement to 100 PeV and higher where the second knee is located. An energy scale determined by balloon experiments at 10 TeV will be propagated to ultra high energy cosmic ray experiments.
The ARGO-YBJ experiment is an Extensive Air Shower (EAS) array which combines high altitude location and full coverage active area in order to reach low energy threshold at a level of few hundred of GeV. The large field of view (≈ 2 sr) and the high duty cycle (≥ 90%) allow the continuous monitoring of the sky searching for unknown sources and unpredictable events, such as flares in blazar emissions and high energy Gamma-Ray Bursts (GRBs). In this paper I will briefly report on the detector performance and on some preliminary results achieved in γ-ray astronomy.
The ARGO-YBJ experiment is in stable data taking since November 2007 at the YangBaJing Cosmic Ray Laboratory (Tibet, P.R.China, 4300 m a.s.l.). It exploits a full coverage and high altitude approach to the small air showers detection. The detector is made of a single layer of RPCs operated in streamer mode, fully instrumenting a central carpet of about 5700 m2, then a guard ring extends the partially instrumented area to about 11,000 m2. The large field of view (∼ 2 sr) and the high duty cycle (≥ 85%) allow a continuous monitoring of the sky in the declination band from -10° to 70°; the detector operates with an energy threshold of a few hundred GeV. Recent achieved results will be reported.
Condividi questo sito sui social