Effettua una ricerca
Giulio Landolfi
Ruolo
Ricercatore
Organizzazione
Università del Salento
Dipartimento
Dipartimento di Matematica e Fisica "Ennio De Giorgi"
Area Scientifica
Area 02 - Scienze fisiche
Settore Scientifico Disciplinare
FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
Settore ERC 1° livello
Non Disponibile
Settore ERC 2° livello
Non Disponibile
Settore ERC 3° livello
Non Disponibile
We propose a novel approach to the construction of multi-parameter generalisations of the van der Waals model constructed in such a way that the equation of state is a solution to an integrable nonlinear conservation law linearisable by a Cole–Hopf transformation. We show that our extended van der Waals equation of state is compatible with notable empirical models for a suitable choice of the free parameters and can be viewed as a master interpolating equation. The present approach also suggests that further generalisations can be obtained by including the class of dispersive and viscous-dispersive nonlinear conservation laws and could lead to a new type of thermodynamic phase transitions associated to nonclassical and dispersive shock waves.
We solve the problem of integrating operator equations for the dynamics of nonautonomous quantum systems by using time-dependent canonical transformations. The studied operator equations essentially reproduce the classical integrability conditions at the quantum level in the basic cases of one-dimensional nonautonomous dynamical systems. We seek solutions in the form of operator series in the Bender–Dunne basis of pseudodifferential operators. Together with this problem, we consider quantum canonical transformations. The minimal solution of the operator equation in the representation of the basis at a fixed time corresponds to the lowest-order contribution of the solution obtained as a result of applying a canonical linear transformation to the basis elements.
We discuss conditions giving rise to stationary position-momentum correlations among quantum states in the Fock and coherent basis associated with the natural invariant for the one-dimensional time-dependent quadratic Hamiltonian operators such as the Kanai-Caldirola Hamiltonian. We also discuss some basic features such as quantum decoherence of the wave functions resulting from the corresponding quantum dynamics of these systems that exhibit no time dependence in their quantum correlations. In particular, steady statistical momentum averages are seen over well defined time intervals in the evolution of a linear superposition of the basis states of modified exponentially damped mass systems.
In this paper, we consider quantization of powers of the ratio between the Hamiltonian coordinates for position and momentum in one-dimensional systems. The domain of the operators consists of square integrable functions over a finite real interval to ensure boundedness and self-adjointness. The spectral problems for the operators that result from using Weyl-ordering are discussed by introducing Fredholm integral operator forms in position representation, and the symmetry of the actions of the parity and time reversal operators on the kernels is discussed. Finally, the general structure and properties of the eigenfunctions and eigenvalues are also derived and analyzed.
Condividi questo sito sui social