Effettua una ricerca
Roberto Spina
Ruolo
Professore Associato
Organizzazione
Politecnico di Bari
Dipartimento
Dipartimento di Meccanica, Matematica e Management
Area Scientifica
Area 09 - Ingegneria industriale e dell'informazione
Settore Scientifico Disciplinare
ING-IND/16 - Tecnologie e Sistemi di Lavorazione
Settore ERC 1° livello
PE - Physical sciences and engineering
Settore ERC 2° livello
PE8 Products and Processes Engineering: Product design, process design and control, construction methods, civil engineering, energy processes, material engineering
Settore ERC 3° livello
PE8_9 - Production technology, process engineering
AFFRONTIAMO LA CARATTERIZZAZIONE DI UN LEGA DI ALLUMINIO FINALIZZATA ALLA CREAZIONE DI UN MODELLO NUMERICO DI UN PROCESSO DI FORMATURA SUPERPLASTICA. L’INDIVIDUAZIONE DEI PARAMETRI DEFORMATIVI OTTIMALI E DELL’EQUAZIONE COSTITUTIVA DEL MATERIALE HANNO PERMESSO DI ANALIZZARE LE CRITICITÀ DI PROCESSO NELLA REALIZZAZIONE DI UN COMPONENTE DI FORMA COMPLESSA NON REALIZZABILE CON TECNICHE CONVENZIONALI.
RACCONTIAMO L’APPLICAZIONE DI UN SISTEMA DI MISURA SENZA CONTATTO ALLO STUDIO DELL’ANOMALO COMPORTAMENTO DEFORMATIVO DI ALCUNI MATERIALI DI LARGO USO INDUSTRIALE (COME L’ACCIAIO E LE LEGHE DI ALLUMINIO) DOVUTO ALL’EFFETTO “PORTEVIN-LE CHATELIER” (PLC)
The main objective of the presented work is to develop an integrated computational environment that predicts final part properties made of semicrystalline thermoplastics. This objective is fulfilled by adopting the following two-step approach: 1) identification of an analytical scheme to correlate crystallization parameters with engineer properties; 2) apply the analytical scheme to the numerical simulation to study the polymer and final properties of the part. In this work the crystallization evolution in cooling phase, mainly influenced by thermal gradients, and its effect on the final part properties are investigated. The numerical method, crystallization models and their implementation into numerical software are described as well as the experimental data.
Teilkristalline Thermoplaste sind eine wichtige Werkstoffgruppe der thermoplastischen Kunststoffe. Im Gegensatz zu rein amorphen Kunststoffen kommt es bei der Erstarrung dieser Materialien zu einer periodischen Anordnung der Molekülketten. Dies kann beispielsweise durch eine wiederholte Faltung der Ketten geschehen, wodurch dicht gepackte, geordnete Bereiche entstehen. Es gibt dabei einige limitierende Faktoren, die die vollständige Erstarrung der Polymerschmelze in periodischen Anordnungen verhindern. Neben Schwankungen des Molekulargewichtes sind hier beispielsweise auch Verschlaufungen der Polymerketten zu nennen. Folglich existieren neben den kristallinen auch amorphe Bereiche mit gleichen chemischen, aber unterschiedlichen physikalischen Eigenschaften. Man spricht daher auch von teilkristallinen Werkstoffen und gibt den Anteil der kristallinen Bereiche mit dem Kristallisationsgrad an. Durch die Faltung der Polymerketten entstehen plattenförmige Anordnungen der Moleküle, Lamellen genannt, die charakteristisch für die meisten teilkristallinen Thermoplaste sind. Die Lamellen können in der erstarrten Schmelze in unterschiedlichen Konfigurationen zu Überstrukturen angeordnet sein, wie beispielsweise in einer radialen oder im Falle einer hochorientierten Schmelze in einer Shish-Kebab Anordnung. Die radiale Struktur, auch Sphärolith ge- nannt, ist dabei die bekannteste Struktur, weil sie bei vielen teilkristallinen Werkstoffen, insbesondere den Massen- kunststoffen PP und PE auftritt. Die Sphärolithe können dabei Durchmesser von wenigen Mikrometern bis zu einigen Millimetern haben (Bild 1). Eines der Forschungsziele am IKV ist es, eine Gefügestruktur bis zu einer Größenordnung von wenigen μm für spritzgegossene Bauteile zu berechnen.
The main objective of the presented work is to describe the crystallization kinetics of semi-crystalline thermoplastics with a multiscale model implemented into the COMSOL software and the in-house developed code SphäroSim. The filling and cooling simulations, implemented by using the computational fluid dynamics (CFD) and heat transfer (HT) modules of COMSOL, require the simultaneous solution of non-Newtonian multi-phase flow (polymer/air) and thermal fields in non-isothermal condition and transient regime. The simulation results are collected, converted into the OpenSource file format VTK (Visualization Toolkit) and transferred to the SphäroSim code after a matching operation with the COMSOL mesh. The SphäroSim code uses COMSOL results as input data to compute crystallization kinetics, using the COMSOL data as boundary conditions in the microstructure simulation. This allows the time resolved calculation of the crystallization process and a prediction of the final microstructure in the part which can be used in further simulations such as a structural analysis. The analytical parameters needed to connect crystallization kinetics with molecular material properties and applying the analytical scheme to the numerical simulation during filling and cooling in an injection moulding process are identified.
In the present research, the authors investigated the lens manufacturing with the injection molding process by using the geometrical contour errors as the quality criterion. In order to produce functional injection-molded optical components, a special cavity mold was used to perform experimental testing for biconvex spherical lenses and numerical simulation was used to help during mimic of the process behavior. The approach was divided into validation step and optimization step. In the validation step, a reliable numerical model was designed to reproduce material features during filling and shrinkage, in order to correctly evaluate lens deflection. In the optimization step, the Grey Relational Component analysis coupled to the Taguchi Design was used to identify the optimal parameter set leading to the best values of lens total deflection, Peak-to-Valley and Root Mean Square between real and ideal lens surface geometry.
Condividi questo sito sui social